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SUMMARY

The objectives of this program were to obtain additional knowledge
regarding the parameters that affect the performance of conventional
labyrinth seal configurations and to optimize the performance of an
advanced labyrinth seal.

Rig testing was conducted to determine labyrinth air seal static and
dynamic leakage performance for solid-smooth, abradable, and honeycomb
lands using a conventional four knife straight-through seal and an
advanced seal design. The effects of land surface roughness, abradable
land porosity, rub grooves, honeycomb cell size and depth, and rotation
on seal performance were determined using the conventional
straight-through seal. The effects of rotation on optimum seal knife
pitch were also investigated. Selected geometric and aerodynamic
parameters for an advanced seal design were evaluated to derive an
optimized performance configuration.

Seal rotational energy requirements were also measured to determine the
inherent friction and pumping energy absorbed by the various seal knife
and land configurations tested in order to properly assess the net seal
system performance level.

The major results obtained in this program include the following:

o An advanced labyrinth seal design was developed that reduced leakage
26.9% compared to a conventional stepped seal.

B . R o
FLow = FLOV = \ '

CONVENTIONAL STEPPED ADVANCED DESI1G™
LABYRINTH SEAL LABYRINTH SEAL

o Using a honeycomb land with the advanced seal increased leakage 68.6%
compared to the solid-smooth land.



Honeycomb lands were found to reduce leakage up
to 24% for conventional straight-through
labyrinth seals.

Medium surface roughness was found to reduce RO
straight-through seal leakage approximately 23% FLOW =
relative to a smooth land at .013 cm (.005 in.)
clearance and 5.0% at .051 cm (.020 in.)
clearance. Greater roughness increased leakage.

Some abradable lands were found to leak CONVENTIONAL

substantially more than a solid-smooth Tland. STRAIGHT-THROUGH
LABYRINTH SEAL

Grooving a porous abradable seal land

significantly reduced leakage through the

material.

Rotation reduced straight-through seal leakage up to 10X for smooth
and abradable lands, but it had negligible effect with the honeycomb
land.

Rotation decreased the advanced seal leakage approximately 6% for the
solid-smooth and abradable lands. However, the honeycomb ‘and
experienced a 6.4% leakage increase with rotation compared to the
static performance.

The rotational power absorption for solid-smooth, abradable, and

honeycomb lands using a conventional four knife straight-through seal

showed small differences. The honeycomb land had the maximum value

ﬁhich was 5.7% higher than the power absorption level ot the smooth
and.

The advanced seal rotational power absorption for the solid-smooth
land is approximately the same as the four knife straight-through
seal.

Rotational effects do not influence the selection of the seal knife
optimum pitch for a straight-through seal.
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INTRODUCTION

Technological advancements to achieve higher thermal and propulsive
efficiencies for current and advanced aircraft gas turbine engines have
been characterized by significant increases in the operating cycle
pressure ratio and turbine inlet temperature. These trends typically
c '1se internal air seal leakage to increase. A higher operating
temperature causes greater differential growth, frequently resulting in
larger seal clearances. A higher cycle pressure ratio tends to increase
seal leakage, even at the same seal clearance level. This flow increase
can be predicted from the compressible flow relationship,
pyA
w =/T-U—-— ¢ .

As engine pressure ratio increases, pressure (py) increases more

rapidly than temperature (Ty). The airflow parameter ( ¢ ) increases

or remains constant if the seal is choked. Therefore, seal leakage
increases on an approximately proportional basis with increases in seal
inlet pressure. Applying this relationship to a labyrinth seal in a gas
turbine, assuming constant engine airflow, as compressor pres:‘re ratio
is increased, the seal leakage increases as presented in Figure 1.

Incorporating a variable cycle engine approach to future designs ma_
also increase seal leakage. Normally, seal clearances are set to run as
tight as possible at the engine maximum time operating point. The
resulting clearances at other conditions are accepted since they usually
represent a small percentage of the operating time. However, the
variable cycle engine, through differential growth of hardware caused by
temperature and material differences, will cause the average seal
clearance to be greater and thus, increase leakage.

Compensating for the current state of sealing technology by attempting
to improve aerodynamic component efficiencies has normally resulted in
limited payoffs relative to time, cost, and effort expended. For an
advanced high bypass ratio gas turbine engine, Figure 2 shows examples
of the improvements in compressor and turbine component efficiencies
required to achieve the same increase in engine performance as a
reduction in turbine seal component leakage of 1% of the engine
airflow. A reduction in the compressor rotor exit seal leakage
amounting .0 1% of engine airflow would produce the same results as a
comprecsor efficiency increase of 0.91%.

The benefits of improved sealing effectiveness are equally significant
tor fuel conservation oriented engines. Figure 2 illustrates the
percent change in engine specific fuel consumption for a 1% (of gas
generator inlet flow? reduction in seal leakage.
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There are also development cost savings. The cost trade-off for
improving seal performance compared to improving the compressor or
turbine component aerodynamic efficiency is of significant
consideration. Extracting the same performance improvement with
compressor or turbine efficiency improvements, as compared to seal
leakage improvements, is several times more expensive. Typical examples
of these cost trade-offs are shown in Figure 3.

The foregoing trends and payoffs have, therefore, added increased
emphasis to the immediate need for accelerated development and continued
improvement of gas turbine sealing technology in order to reduce costly
seal leakage to a miv.aimum. This development will also provide better
and more reliable control over sophisticated cooling circuits and
prevent high seal leakage flows from entering critical locations in the
turbine gas path which can result in considerable penalty from thermal
and momentum losses.

The objectives of improved gas turbine performance and fuel savings can
be achieved by reducing the leakage in current seals with design
modifications and by developing high efficiency labyrinth seal
concepts. However, there are technology voids in the design, analysis,
and "in service" performance of labyrinth seals that required detailed
investigation and understanding. This information is required to
provide direction for design improvements. Detroit Diesel Allison
(DDA) has been investigating various aspects of labyrinth seal
performance under in-house funding and through two contracts with the
Naval Air Propulsion Test Center. Through the results of these studies,
design concepts have been tested that significantly reduce seal leakage
as compared to a conventional seal. The program that is the subject of
this report is an extension and expansion of experimental work
accomplished at DDA over the past several years.

A diagram illustrating the efforts of this program is presented in
Figure 4. The program was divided into two basic technical tasks. The
work involved in Task I included experimentally determining labyrinth
seal performance for a conventional rour knife straight-through seal
using abradable and honeycomb lands. Task II was directed toward
optimizing an advanced labyrinth seal design and exploring the effect of
non-constant geometry to -educe leakage in an advanced seal.

In Task I, four commercially available abradable land materials and
three honeycomb cell size lands were evaluated for aerodynamic
performance on the 2D test rig. The effects of surface roughness on
solid lands, porosity leakage on the abradable lands, and cell depth on
the honeycomb lands were also determined using the 2D rig. One of the
porous material abradable lands was grooved to simulate a rub condition
and retested to determine the effect on leakage. A1l 2D rig testing in
this task was accomplished at three clearance levels: 0.013 cm (.005
in.), 0.025 cm (.010 in.), and 0.051 cm (.020 in.).
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Based on the results of the 2D rig tests, selected abradable and
honeycomb lands were fabricated and tested in the 3D rig up to 239 m/s
(785 ft/sec) to investigate the effect of rotation on seal leakage and
to determine the rotational power absorption differences of
solid-smooth, abradable, and honeycomb lands. The rotational power
difference combined with seal leakage difference gave the net seal
system performance change.

The abradable land for the 3D rig was grooved 1020 to simulate a light
rub. Then the rub grooves were extended to 3600 and retested. Tests
were conducted statically and dynamically with the rotor knives forward,
over, and behind the grooves to determine the leakage performance.

Also, in Task I, the effect of rotation on the optimum design pitch of a
straight-through seal was investigated with solid-smooth, abradable, and
honeycomb lands. Three values of pitch were tested: .203 cm (0.080
in.), .279 cm (0.110 in.), and .356 cm (0.140 in.). Radial clearances
of 0.025 cm (0.010 in.) and 0.051 cm (0.020 in.) were used. Testing was
dona statically and at three levels of rotational velocity: 80 m/s (261
ft/sec), 159 m/s (523 ft/sec), and 239 n/s (785 ft/sec).

In Task 1I, the major geometric seal parameters (knife pitch, knife
height, knife angle, and step height) were explored to optimize an
advanced seal design in terms of minimum leakage. Also, the use of
non-constant knife pitch was investigated as a technique to maximize the
internal seal cavity turbulence between knives. The optimization of
individual knife discharge coefficients will result in minimum seal
leakage. The 2D air seal test rig was employed as an expedient and
economical means of conducting the advanced seal design optimization
work and non-constant pitch studies. The optimum advanced seal
configuration identified by the 2D rig tests was fabricated for the 3D
rig and tested statically and up to 239 m/s (785 ft/sec) rotational
velocity. The advanced seal configuration was tested with solid-smooth,
abradable, and honeycomb lands at 0.051 cm (0.020 in.) radial

clearance. Rotational power absorption was also measured for the
advanced seal 30 rig tests.
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TEST RIGS AND PROCEDURES

Two complementary test rigs were used for this program. A
“two-dimensional" (2D), static rig was used to investigate the primary

effects of land material. The influence of geometric variations on the
leakage performance of an advanced seal was aiso surveyed, optimized,
and mapped with the 2D rig in preparation for the design and fabrication
of an optimum advanced seal for dynamic testing. A "three-dimensional"
(3D), dynamic rig was used to obtain the effects of annular geometry and
rotation on the seal leakage and power absorption. An abradable land
material and a honeycomb land materia! were compared to a solid-smooth
land using straight seals and an optimized advanced seal.

2D Rig

The terminology, "two-dimensional” static test rig, is based on the seal
models which are installed in the rectangular test section. These
models do not simulate the effects of seal curvature or rotation and
involve small end-wall effects. However, the high aspect ratio test
section, 16.0 cm (6.28 in.) wide, minimizes these end effects.

Building block, adjustable seal hardware is used to obtain versatility
and multiple use of components. Individually adjustable knife and land
sections can produce continuous changes in the primary geometric
variables of straight, stepped, and advanced seals in a cost effective
manner. The features incorporated in the rig design, Figure 5, allow
one set of knife hardware (knife angle) to cover the conventional range

of variation in:

knife clearance

knife pitch

knife height

number of knives

step height

o distance-to-contact (axial clearance)

The maximum seal length test envelope of 5.1 cm (2.0 in.) wil) allow a
considerable number of straight seal knives (depending on pitch) and up
to four stepped seal knives to be tested over a complete range of
clearance encountered in small and large high temperature aircraft

engines.

Figure 6 shows a close-up view of the two-dimensional test section with
the four knife stepped seal installed. Each knife and each land are an
individual hor{2ontal piece and can be adjusted in an axfal direction
relative to adjacent pieces to make arbitrary changes in the pitch.
Step height can be varied by inserting shims (not shown) between
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adjacent knife and Tand sections. The knife-to-land axial seal
clearance can be easily changed with the adjustment screw as shown in
Figure 6. Vertical clearances between the corresponding lands and
knives can be varied by clearance shims as noted., Changes in knife
height are accomplished by filling the knife cavities with Jow
temperature pattern wax. The number of knives can be changed by
removing corresponding knife and land sections. For vertical knife
seals, the flow direction through the seal can be changed by reversing
the knife and land foundations. Changes in knife angle and land contour
do require different hardware.

Figure 7 shows a clise-up view of a two-dimensional four knife straight
seal installed in the test section. The straight seal assembly is
similar to, but simpler than, that for the stepped seal since one land
section is required. Spacers between knives, with specific height and
thickness dimensions, are used to adjust knife pitch and height in the
straight seal.

The 2D rig installation permits aerodynamic evaluation of seal
performance to a seal inlet pressure of eight atmospheres at room
ambient temperature. Alternately, clear arcrylic side plates will allow
flow visualization testing to a seal inlet pressure of 2.5

atmospheres. The rig normally discharges outside the test ceil through
a 14.6 cm (5.76 in.) I.D. pipe which creates less than 0.5 cm (0.2 in.)
Hg pressure loss.

The plane walls forming the square test section of the 2D rig experience
small structural ceflections which can result in clearance changes under
high air pressure loading. A micrometer dial gauge (see Figure 8) with
.00005 cm (.00002 in.) readability is mounted on the top plate to
monitor the relative movement of the seal knife hardware, which is
indicated by the vertical travel of the follower pin,

The 2D rig allowed the extensive survey of seal geometry and material
effects on performance to be accomplished expeditiously at minimal costs
in hardware fabrication, manpower, and schedule.

30 Rig

The terminology, “"three-dimensional" dynamic test rig, is based on the A
circular geometry of the s2al models. The test seals typically have a
maximum diameter of 15.24 cm (6.00 in.) and can be run at rotational
speeds to 30,000 rpm for the simulation of actual engine applications.
The 3D rig rotor is driven by an impulse turbine with speed control that
is independent of the seal inlet pressure. Therefore, static
performance (at O rpm) and the influence of knife tip speeds up to 239
m/s (785 ft/sec) can be evaluated over a range of seal pressure ratio
from 1.0 to approximately 0.51/ v CL, cm, (or 0.32/ /Y CL, in.). Figure
9 shows the 3D rig installed in the test cell. The rig lubrication
system is prominent on the shelf beneath the test section and drive
turbine section.



The seal knife geometry is normally tested on the rotor which is a
single combination of knife angle, number of knives, pitch, and knife
height for a given flow direction and step height in the case of stepped
seals. The matching stator is designed for a single clearance and can
be reversed for the large-to-small diameter (LTSD) and the
small-to-large diameter (STLD) flow direction testing in the case of
stepped seals. The distance-to-contact (DTC) for stepped seals or knife
position over the land, as in the case of rub groove testing on straight
seals, can be varied by inserting shims behind the stator. Additional
use of the seal rotors has been achieved by removing some of the knives
to obtain data for shorter seals.

Instrumentation

Comparable air temperature and static pressure instrumentation were used
to determine the seal leakage performance in both the 2D static rig and
the 3D dynamic rig. The 3D rig employed additional temperature and
static pressure instrumentation to define the turbine power produced
during dynamic operation. Dynamic testing also required some
electronics to record rotor speed and to monitor two-degrees-of-freedom
vibration levels at the seal test and turbine drive sections.

2D Rig Instrumentation. The instrumentation locations for the 2D rig
are shown schematically in Figure 10. Airflow through the seal model
was determined with a standard ASME square edge orifice, 0.760 cm (0.299
in.) diameter, installed in a 4.925 cm (1.939 ia.) I.D. flow tube with
static pipe taps. This flow tube was utilized for all 2D rig tests
except the porosity leakage evaluation of the porous abradable lands.

During the porosity testing of the abradable land materials, the leakage
was exhausted to laboratory ambient through a 5.0 c¢cm (2.0 in.) I.D. flow
tube with a 1.270 cm (0.500 in.) diameter flow measurement orifice.

This test section exit instrumentation permitted accurate measurement of
the very low airflows which were throttled through the porous materials.

Static pressures upstream and downstream of the airflow orifice and at
the seal inlet plenum were normally measured on 0 to 950 cm (0 to 375
in.) HgA Heise absolute pressure gauges. Meriam O to 200 cm (0 to 80
in.) water manometers were used to measure pggy and psgp during the
porosity tests.

The seal downstream plenum static pressure was measured on a Meriam -25
to 175 cm (-10 to 70 in.) mercury manometer during all 2D rig tests.

Air temperatures upstream of the airflow measuring orifice and upstrem
of the seal model were measured with shielded iron-constantan (I.C.)
thermocouples. The temperatures were displayed in degrees Fahrenheit on
a direct reading Brown potentiometer scale.

10



3D Rig Instrumentatica. The instrumentat:icn locations for the 3D rig
‘a~e shown schematically in Figure 11. The airflow conditions required
to define the seal leakage performance i 7€ 3D rig are the same as
those required in the 2D rig.

The same 4.925 cm (1.939 in.) I.D. flow tube -ith pipe taps delivers air
from tve high pressure source to the inlet d.7fuser of the 3D rig.
Howev-r, a standard ASME square edge orif:.:.. 1,270 cm (0.500 in.)
diame.»~, was installed in the flow tut. ‘3 iccommodate the increased
seal ai~flew rate. The 3D rig will pas: ti-ee times the airflow rate of
comparabie 2D rig seal configuratica,

3D seal circumfo <o | 6,07
20 seal Ter.i- =  6.28 3.002.

Additional data for the airflow nanditions in the turbine section of the
3D rig were necessary to define the power delivered to the rotor during
dynamic testing. The turbine 2irflow was measured in the supply line
using a standard ASME flow tube with a thin plate, square edge orifice,
which was calibrated against a secondary standard.

Several operating parameters were monitored to ensure proper and safe
dynamic testing in the 3D rig:

o rotor thrust balance cavity static pressure
0 lubrication system supply pressure
o four temperatures within the lubrication system,
1) pump discharge
2) bearing sump
2) rig discharge
4) reservoir

The rotor thrust balance cavity pressure was measured on a2 0 to 305 cm
(0 to 120 in.) HgA Heise pressure gauge and manually recorded.

A1l of the seal and turbine performance data taken during 3D rig testing
was displayed and recorded by an automatic datay acquisition system which
was installed at the beginning of the 3D dynamic air seal rig test phase
to accommodate the increased data sampling requirements and to reduce
data handling during processing. This system, shown on Figure 12,
consists of commercially avafilable components and was assembled as a
self-contained integrated unit by DDA's Electronics and Test Equipment
Department.

The system, as shown schematically in Figure 13, consists of a data

input sequencer which selects a predetermined number of Scanivalve
channels for pressure sampling. The 24 channel Scanivalve unit

1



accommodated the four seal pressures and the six turbine pre<sures
utilized to calculate s2il leakage and power absorptimn, respectively.
The pressure was sensed by O to 689 kPa G (0 to 100 psig) Druck strain
gauge transducer with +.15% accuracy (full range). At each Scanivalve
channel setting a Fluke Model 2200A data logger-multiplexer processed
the analog output from the transducer and four iron-constantan (I1.C.)
thermocouples, which measured seal and turbine air temperatures. In
addition, the data logger also recorded binary coded data (BCD) input at
each channel setting from a Fluke 1900A digital counter that was
utilized to monitor turbine rotational speed. The processed digital
output was printed on paper tape by the data logger and, also, fed to a
Facit 4070 paper tape perforator which was programmed for ASCI II punch
coding. The total data sampling and recording time for one seal
operating condition was approximately 25 seconds.

Pata Reduction and Calculation Methods

The leakage performance of a labyrinth seal correlates on the airflow
parameter,
w/TU

¢ = ’
Py A

as a function of the seal pressure ratio, py/pp, in the absence of
Reynolds number or heat transfer effects. When the discharge pressure
is approximately constant, the test Reynolds number is invariant at a
given pressure ratio for the ambient temperature air source. The heat
transfer influences are also minimized by the ambient temperature test
fluid.

2D Rig Data Reduction. The 2D rig instrumentation was manually read and
recorded on data sheets. The data were transposed from the sheets to
compu’er cards and submitted as input to a program in an IBM 370-158
digital computer,

For each test condition, the 2D rig seal performance program converts
the instrumentation readings to the desired units and computes seal
airflow rate from the orifice tube calibration curves. The seal airflow
is then expressed as an airflcw parameter for each knife, based on the
average operating knife clearance. The average clearance area of all
the seal knives is used to determine the overall airflow parameter at
tne seal pressure ratio, py/pp. These clearance values aro

corrected from the build-up measurements for the rig case deflection.

Examples of the computer program output dat: for the 2D rig performance
can be found in Appendix F, The primary variables (wv Ty/pyA versus
py/pp) are automatically plotted by a Calcomp machine plotter from

the overall airflow parameter and pressure ratio data. These plots can
be found in Appendix A.

12
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3D Rig Data Reduction. The punched paper tape generated by the
automatic data acquisition system was read by a Modcomp minicomputer and
the data then submitted to a permanent magnetic disc file for reduction
by the IBM 370 computer system. The seal leakage performance is reduced
by the same procedure employed for the 20 rig data.

Dynamic conditions at 10,000, 20,000, and 30,000 rpm were recorded in
addition to the static performance. The 3D rig program calcuiates the
rotor growth based on the dynamic conditions to determine the rotational
seal clearance.

A sample calculation from the 3D rig data reduction program is presented
in Appendix F. The Calcomp plotter automatically graphs the overall
airflow parameter (ordinate) against the seal pressure ratio (abcissa)
for lines of constant actual rotor speed (including static). These
plots can be found in Appendix B.

3D Rig Power Absorption Analysis

The rotational power requirements for the 3D seal test configurations
were evaluated at the same rotational speed and seal pressure ratio by
measuring the rig drive turbine inlet and exit conditions.

The air impulse drive turbine on the DDA dynamic seal rig was utilized
as the power sensitive device since, as the power recuirements of
various seals change, the energy levels into the drive turbine change in
order to maintain the same rotational speed. Changes in turbine
performance (efficiency) relative to turbine loading (or speed) were
then used to calculate the turbine power output for various seal
configurations.

The DDA dynamic seal rig turbine performance was determined by utilizing
a discrete mapping procedure due to the impulse design of the turbine
blading. In the case of a pure impulse turbine, the torque coefficient,
as a function of blade-jet speed ratio (U/C*), is linear. Therefore the
torque at stall (speed = 0) and the maximum blade-jet speed ratio at
free running speed (torgque = Q) were measured to determine the end
points of the torque characteristic. Figure 14(a) illustrates the
torque characteristic of the drive turbine and indicates the stall and
ultimate speed conditions measured. The stall torque coefficient and
ultimate speed ratio are notably low, based on state-of-the-art design.
This is due to the low cost, simple blading of the drive turbine and the
inherent power requirements of the integral balance seal, bearings, and
drive shaft system attached to the turbine,

The turbine efficiency was then calculated as a function of blade-jet
speed ratio (U/C*) knowing the torque coefficient (1) where efficiency
is nt =4 T U/C*,

Figure 14(b) illustrates the resulting efficiency characteristic
calculated. A relatively low efficiency level is noted which, again, is

13
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due to the blading and turbine shaft system. This low ~fficiency level,
however, made the turbine more sensitive to small power requirement
changes, thus making it a good differential power measurement system.

To determine the relative seal energy requirement for a given seal, the
rotational speed and seal pressure ratio were maintained constant while
the turbine inlet temperature, pressure, flow rate, and turbine exit
pressure were monitored. From these quantities, the jet speed (spouting
velocity) was calculated. Knowing the turbine speed, the blade-jet
speed ratio was then computed and the turbine efficiency determined from
Figure 14(b). The resulting horsepower was then calculated based on the

expression:
Y-1
S S L S (/1 1_("Tn> 5

.7069 PTu

This calculated horsepower value represents the total pumping and
windage losses of the seal rotor, including the sides of the rotor.
However, since all the rotors tested had essentially the same side wall
geometry, the difference in power requirements could be attributed to
the knife and land interface alone.

Initial 3D rig testing with the four knife straight seal rotor disclosed
significant scatter in the measured seal rotor power absorption data
when plotted versus seal pressure ratio. The thrust balancing of the
seal rotor-turbine drive system was suspected as the influencing factor
for this data scatter. The normal thrust balance procedure, to maintain
a constant axial bearing load, was to change the thrust balance piston
supply pressure as a function of the seal upstream pressure (py)

only. However, after several tests it was noted that the seal
donwstream pressure was varying considerably, depending upon the
clearance and type of land tested. This was due to the range of seal
leakage exiting through the rig exhaust system, which created a
significant variation in seal downstream back pressure, thus influencing
the thrust bearing load.

To determine if the turbine aerodynamics could detect these suspected
changes in bearing load, a test was performed in which the thrust
balance pressure was varied to purposely change the thrust load. Figure
15 illustrates the effect of varying the bearing load for a given seal
configuration from 670 N {150 1bg) to 1550 N (348 1bg) at 20,000 rpm

and at a seal pressure ratio of {.7. As noted, a .142 kw (.19 hp)
change was indicated over the thrust load range tested, thus
substantiating that the power absorption technique, utilizing the
turbine as a measurement device, could in fact differentiate relativcly
small changes in power absorption.

As a result of this sensitivity, all subsequent 3D test calibration
pcints were made with a constant 670 N (150 1bf) bearing load where
possible., This was accomplished by monitoiring the seal downstream

14



pressure and including its effect in determining the required thrust
balance piston pressure to maintain const.nt bearing load.

The results of the seal power evaluatiors and comparisons are described
in the section on "Rotational Power Absorption".

Description of Test Conditions

Test conditions for the 2D rig and 3D rig were selected to provide a

good distribution for data plotting within the pressure range of the

facility. Pressures were the only conditions arbitrarily controlled.

?;rosgpply temperatures varied only +4 C (79F) from a nominal 23 C
30F).

2D Static Rig. The operational simplicity and low data sampling

requirements of the 2D rig permitted the recording of fifteen seal
pressure ratio conditions for each test configuration. Test conditions
at seal inlet pressures up to a maximum of eight atmospheres were
recorded for some seal configurations. The following table lists the
standard seal inlet pressures set in increasing order dvring a typical
2D rig test.

TABLE 1. Typical 2D Rig Test Conditions

Sequence Py/PD py - Seal Upstream Pressure
Number (Approximate) cm Hg A in. Hg A
1 1.12 . 33.

2 1.22 91, 36.

3 1.42 1C7. 42,

4 1.63 122. 48.

5 1.83 137. 54,

6 2.03 152, 60.

7 2.44 183. 72.

8 2.85 213. 84.

9 3.25 244, 96.

10 3.66 274. 108.
11 4.27 320. 126.
12 4,88 366. 144,
13 5.49 411. 162.
14 6.10 457. 180.
15 6.78 508. 200.

3D Dynamic Rig. Static testing on the 3D rig was similar to that on the 2D

B s it SN T

rig. However, the higher airflow rates and more restricted seal discharge
area limited the pressure ratio range to about one-third that of the 2D rig.
The following table lists the standard seal inlet pressures set in increasing
order during a typical 3D rig test.

15
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TABLE 2. Typical 3D Rig Test Conditions

Sequence pu/pPD py - Seal Upstream Pressure
Number (Approximate) cm Hg G in. Hg G
1 1.12 9.4 3.7
2 1.21 17.0 6.7
3 1.40 32.3 12.7
4 1.58 47.5 18.7
5 1.76 62.7 24.7
6 1.94 78.0 30.7
7 2.28 108. 42.7
8 2.61 139. 54.7
9 2.93 169. 66.7
10 3.24 200. 78.7

Each 3D rig test was initiated by taking a static (zero rotor rpm)
leakage flow calibration. The static calibration was followed by
rotational calibrations at seal rotor speeds of 10,000, 20,000, and
30,000 rpm. At each point, a full scan of the automatic data
acquisition system was recorded on punch paper tape printout. Ouring
the dynamic testing, thrust balance air was supplied at the pressure
required by seal inlet pressure and seal discharge pressure to maintain
a constant 670 N (150 1bf) aft load on the rotor thrust bearing.

16
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FIGURE 10. TWO-DIMENSIONAL STATIC SEAL TEST
RIG INSTRUMENTATION SCHEMATIC
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FICURE 12. AUTOMATIC DATA ACQUISITION SYSTEM

FOR DDA LABYRINTH SEAL RIG
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FIGURE 15. SENSITIVITY OF 3D RIG DRIVE TURBINE BEARING

LOAD ON MEASURED POWER ABSORPTION
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TEST RESULTS AND DISCUSSION

The aerodynamic performance of conventional and auvanced labyrinth seals
was investigated during the course of this program. These investigations
were conducted for conventional straight-through seals using soiid-
smooth, abradable, and honeycomb lands. Evaluation tests were conducted
in the two-dimensional (2D) ard the rotating three-dimensional (3D) air
seal test rigs.* An advanced labyrinth seal was also developed using
these rigs. The previously unexplored subject of the inherent friction
and pumping energy absorbed by a rotating seal was investigated during
the 3D rig testing.

The information presented in this section has been divided into the
following subsections:

0 Aerodynamic Test Results for Straight-Through Labyrinth Seals
0 Aerodynamic Test Resuits for an Advanced Labyrinth Seal
o Rotational Power Absorption

Aerodynamic Test Results for Straight-Through Labyrinth Seals

The 2D air seal test rig (shown in Figure 5) was used extensively to
evaluate the effect that abradable and honeycomb lands have on straight-
through labyrinth seal leakage. The four knife conventional straight-
through seal used fcr this series of 2D rig tests is shown in Figure 16.
A solid-smooth land was tested in conjunction with the ab:radable and
honeycomb lands to provide a baseline for comparison. A photograph of
the solid-smooth land, the four abradable lands, and the thrce honeycomb
lands tested is presented in Figure 17.

A porous abradable material land and a .159 cm (.062 in.) cell honeycomb
land were tested in the 3D dynamic air seal test rig (shown in Figure 9)
to determine the effect of rotational geometry and dynamic operation on
seal leakage. The four knife straight-through seal used for this eval-
vation is similar to the 2D rig seal tested. A solid-smooth land was
also evaluated statically and dynamically in the 3D rig for comparison.
Two additional rotors with knife pitches of .203 cm (.080 in.) and .356
¢n (.140 in.) were also run to permit the determination of the effects of
rotation and land material on the selection of uptimum knife pitch.

A convenient m2ans of relating the leakage performance of special land
materials to solid-smooth land performance, and an approach that will be

*An evaluation of the correlation of seal performance measured in the 2D
rig with that obtained from the 30 rig is made in Appendix D.
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used throughout this report, is to compare the flow parameter values,¢ ,
at a constant pressure ratio for the various lands tested.*

Several of the seal land configurations were tested at pressure ratios
approaching 8:1 in the 2D riq to determine the choked seal flow char-
acteristics. A typical example of these tests is presented in Figure
A-6, Appendix A, for the four knife straight-through seal using the
nickel-graphite land. These tests verify that the flow parameter, ¢,
approaches a zero slope at the critical pressure ratio and remains
approximately constant in the choked flow regime.

Abradable Lands Evaliation. The four abradable lands tested include two
non-porous materials, nickel-graphite and aluminum-polyester with a
material thickness of .076 cm (.030 in.), and two commercially available
porous abradable materials, "Abradable A" and "Abracable B" with a mater-
ial thickness of .229 cm (.090 in.).** The seal flow parameter char-
acteristics derived from the aerodynamic test performance uata are pr-:-
sented in Figures 18, 19 and 20 for .013 cm (.005 in.), .025 cm (.010
in.), and .051 cm (.020 in.) clearances, respectively. The baseline
solid-smooth land fiow parameter has also been included on these figures
for comparison purposes. The abradable lands with porous materials "A®
and "B" indicated leakage levels approximately 13X higher than the smooth
solid land at .051 cm (.020 in.) clearance. At the two lower clearaaces
investigated, however, the porous abradable lands showed substantially
higher leakage levels. This is attributed to the increasing ratio of
porosity flow (leakage through the material) relative ts the leakage
across the knife gap at the lower clearances.

Table 3 presents a comparison of the seal flow parameter values for the
solid-smcoth and abradable lands at a 2.0 and a 3.0 seal pressure ratio
f: » the clearances tested. The percent variation in leakage from the
solid-smooth land has also been calculated from the flow parameters.
These results show that the porcus land materials, “Abradable A* and
“Abradable B", prcduced 10% to 60% increase in leakage at a 2.0 pressure
ratio compared to the solid-smooth land. The nickel-graphite and
aluminum-polyester lands gave a -8% to +7% leakage change fror the solid-
smooth land at 2.0 pressure ratio. Figure 21, which graph.cally presents
the Table 3 results, clearly shows the higher leakage characteristic for
the porous material abradable lands, particularly at small clearance
levels. The apparent leakage through the porous abradable lands "A* and
“8" diminishes as a percent of the total flow as clearance is increased.

*The complex interactions of seal geometry and clearance with the up-
stream fluid conditions ana pressure ratio limits the discussion of
absolute seal leakage in terms of massflow to specific flow conditions.
For generality, comparisons of “seal leakage® in this report will imply
the relationships among flow parameters, ¢ .

**The commercial names and manufcturers of the “Abradable A* and “Abrad-
able B* materials can be obtained from the NASA Project Manager.
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leakage than the smooth land, respectively. The nickel-graphite land had
a roughe» surface finish, 9 um (350 uin.), than the solid-smooth land,
0.8 um (30 pin.). These results prompted an investigation to deter-
mine the individual effects that surface roughness and porosity had on
the leakage performance of the seal.

The individual seal flow parameter curves for the smooth and abradable
land tests in the 2D seal test rig are included in Appendix A.

Surface Roughness Effect on a Solid Land. A solid land :ith a
medium rougr surface 8.3 um (325 uin.) and a solid land with a rough
surface, 22.9 um (90" pin.), were tested with the four knife straight-
through seal at .013 cm (.005 in.), .025 ecm (.010 in.), and .051 cm (.020
in.) clearances. The surface roughness flow parameters are presented in
Figures 22, 23, and 24 for the three clearances tested. The solid-smooth
land flow characteristics have also been included in these figures. A
similar set of tests was performed using a single straightthrough knife.
These results are presented in Figures 25, 26, and 27. A summary of the
leakage results at a 2.0 and a 3.0 seal pressure ratio is presented in
Table 4 for the four knife straight-through seal and in Table 5 for the
single knife straight-through seal. The percent change in leakage per-
formance from the smcoth land to the medium rough surface and the rough
surface lands is plotted in Figures 28 and 29 for the four knife and
single knife configurations, respectively. Over the range of clearances
tested, a medium rough land reduced the leakage of the four knife seal by
as much as 28%. The relative reduction in leakage was greatest at .013 cm
(.005 in.) clearance and least at .051 cm (.020 in.) clearance. The
rough land actually increased leakage compared with the leakage for the
smooth land at the clearances tested. The single knife performance
results show that leakage was the same or higher than that for a smooth
land.

The leakage reduction achieved with the medium rough land is believed to
be the result of increased friction losses and higher surface turbulence
which tends to disrupt the flow field through the seal. The increased
level of leakage experienced with the rough land appears to be caused by
a larger equivalent clearance. The seal clearance was measured from the
knife tip to the maximum height of the roughness elements on the land
surface. The bigger roughness elements may produce a larger path for
Teakage between the clearance reference surface and the solid sub-
surface. The benefit gained from increased friction and turbulence might
be more than offset by the increased leakage area for the rough land con-
figuration. The little change found in the single knife seal leakage for
the medium rough land points out the significant contribution of the
boundary layer and the seal intercavity turbulence in reducing leakage
through multi-knife seals.
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Combined Porosity and Surtace Roughness Effects on the Abradable
Lands. The porosity leakage tests were conducted using abradable mater-
Tals "A" and "B". These tests were accomplished by clamping a rubber
gasket, that duplicated the length of the four knife test seal, onto the
surface of the abradable material. A sketch of the arrangement is pres-
ented in Figure 30. This approach was intended to be a rapid, first-
order evaluation of the leakage rate through the abradable land material,
however, this technique gave excellent results as evidenced in the fol-
lowing d1scuss1ow

Experimental results for solid lands with surface roughnesses similar to
the "Abradable A" land and the "Abradable "B" land were combined with the
porosity test results and compared to the measured performance of these
porous abradable lands. The flow data are presented in the form

W'/TJ/DU which makes the parameter a function of clearance area.

This approach was required to circumvent flow parameter, ¢ , indeter-
minancy since the clearance area was zero for the porosity tests. Table
6 presents the individual porosity (1) and surface roughness (2) leakage
characteristics for the "Abradable A" land. The sum of these two leakage
components (3) is compared to the actual "Abradable A" land results (4)
at seal pressure ratios of 2.0 and 3.0. The sum of the individual
components, investigated is generally within 5% of the "Abradable A" land
results (see line 5). In one case only, the deviation reaches 8%. This
level of agreement is significantly better than anticipated for a first-
order evaluation. Figure 31 quantifies the fraction of the total four
knife straight seal leakage represented by the porosity flow through an
"Abradable A" land. Although the actual porosity flow does not appear to
be a strong function of clearance, it does decrease steeply as a percent
of the total leakage flow as clearance increases.

The "Abradable B" porosity and surface roughness components are
summarized in Table 7. The analysis of the porosity and roughness com-
ponents is similar to that for "Abradahle A" in Table 6. The results for
"Abradable B" show more deviation between the sum of the individual
leakage components and the measured land performance than they did for
the "Abradable A" land. The leakage component sum (3) was consistently
greater than the measured land leakage (4). A possible explanation for
this characteristic may be found in terms of the effective surface rough-
ness present in the "Abradable B" land test. The porosity leakage, which
is re-entering the mainstream path along the length of the seal, is ef-
fectively filling some portion of the roughness voids. This flow deflec-
tion action would have the effect of reducing the open area between sur-
face roughness elements and subsequently reducing the associated surface
roughne -~ leakage. A plot of the porosity flow component relative to the
total seal leakage is presented in Figure 32.

Since the porosity leakage fraction is approximately the same for the two
abradables, it can be concluded that the "Abradable B" land leakage would
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be reduced to the level of the "Abradable A" land if the surface rough-
nesses were the same. The results of these surface roughness tests
reveal why the "Abradable B" land leaks more than the "Abradable A" land
when the other seal parameters are equal.

Rotational Effect on the Abradable Land. An "Abradable A" material
land was selected for testing with the straight-through seal rotor of
Figure 33 (b) to determine the effects of rotation on leakage per-
formance. A solid-smooth land was used as a performance baseline. Both
configurations were tested at two radial clearance values, .025 cm (.010
in.) and .051 cm (.020 'in.).

The static and dynamic aerodynamic test results from the 3D rig for the
solid-smooth land are presented in Figures B-3 and B-4, Appendix B, for
.025 cm (.010 in.) and .051 cm (.020 in.) radial clearances, irespec-
tively. Similar curves are presented in Figures B-9 and B-10 for the
"Abradable A" material land.

Table 8 summarizes the solid-smooth and abradable land leakage per-
formance at a 2.0 seal pressure ratio for the static and dynamic tests.
The effects of rotation on the "Abradable A" land are very similar to the
solid-smooth land results. At the maximum rotational speed test
condition, 239 m/s (785 ft/sec), the leakage of both lands was reduced
about 10% compared to the static leakage.

The 3D rig static test results showed approximately equal seal leakage
for the solid-smooth land and "Abradable A" land. Comparison with the 2D
rig tests shows the "Abradable A" land leaking 10% more than the solid-
smooth land, suggesting a possible difference in "Abradable A" land
porosity between the 2D and 3D rig tests. Also, ihe surface of the
“Abradable A" land for the 3D rig, 4 um (160 unin.), was somewhat
smoother than the land for the 2D rig, 9 um (350 uin.). The 2D rig
investigations of surface roughness showed that a 9 um (350 wuin.) sur-
face roughness would reduce leakage compared to a smooth surface. Speci-
fic leakage performance information for a surface roughness of 4 um

(160 uin.) is not available, but, based on the 2D rig surface roughness
test results, it is expected to give less leakage than a smooth land.
Since the 3D rig "Abradable A" land leakage was comparable to the solid-
smooth land, it appears that the surface roughness may have offset an
already low porosity leakage.

The smocth and abradable land flow parameter curves for the 3D rig tests
are included in Appendix B.
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FIGURE 16. CONVENT!ONAL STRAIGHT-THROUGH SEAL USED
IN SEAL LAND PERFORMANCE EVALUATION
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FIGURE 17. TWO-DIMENSIONAL TEST RIG STRAIGHT SEAL LANDS
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POROSITY LEAKAGE TO TOTAL LEAKAGE RATIO - %

40,

35.

30.

25.~

15. =

10.

FIGURE 31. EFFECT OF "ABRADABLE A" POROSITY ON LEAKAGE
THROUGH A 4 KNIFE STRAIGHT SEAL
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POROSITY LEAKAGE TO TOTAL LEAKAGE RATIO - %

FIGURE 32, EFFECT OF "ABRADABLE B" POROSITY ON LEAKAGE
THROUGH A 4 KNIFE STRAIGHT SEAL
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TABLE 3.

COMPARISON OF SMOOTH AND ABRADABLE LANDS

PERFORMANCFE. AT VARIOUS OPERATING CONDITIONS

Seal configuration:
Four vertical knives,
pitch = ,279 ecm (.110 i.)
knife height = ,279 em (.110 in}
knife edge thickness = .025 ~ .038 cm (.010 ~ ,015 in)
NOTE: + indicates leakage greater than smooth land at comparable clearance
- indicates leakage less than smooth land at comparable clearance
n ——- -
FLOW PARAMETER | £8/¢ ! FLOW PARAMETER Ly v
/p % FROM P =7 FROM
cL, Py/Pp y | 1b, °RY | sMooTH u/Po | , | 1bm °R | smooTu
LAND CLEARANCE PRESSURE kg -K LAND PRESSURE kg'K LAND
TYPE om Tn. | RATIO Ws- | Pg sec| 7y RATIO Ns Tby sec '
SOLID-SMOOTH .013 . 005 2.0 .0277 . 365 3.0 .0279 .368
.025 .010 .0272 . 358 .0279 .368
. 051 .020 .0277 .365 .0285 .375
"ABRADABLE A" .013 .005 .0353 .465 +27.4 .0384 .505 +37.4
.025 .010 .0299 .393 + 9.8 .0325 .428 116.5
.051 .020 .0305 .401 + 9.9 .0323 .425 +13.3
"ABRADABLE B" .013 .005 . 0445 .585 +60.3 . 0484 .637 +73.3
. 025 .010 . 0344 .452 +26.3 .0367 .483 +31.4
.051 .020 .0312 411 +12.6 .0331 .435 +16.0
Ni Graphite .013 .005 .0268 .352 - 3.6 0274 .36l - 1.8
.025 .010 . 0251 . 330 - 7.8 .0264 .348 - 5.4
. 081 .020 .0284 <374 + 2.3 .0295 .388 + 3.3
Al .013 .005 .0277 . 365 0.0 .0285 .375 + 2.0
Polyester . 025 .010 .0271 .356 - 0.6 .0284 .374 + 1.8
.051 .020 .0298 .392 + 7.4 .0308 .405 + 8.0
e
TABLE 4. EFFECT OF LAND ROUGHNESS ON FOUR KNIFE
STRAIGHT-THROUGH LABYRINTH SEAL FERFORMANCE
o 8¢/¢ ¢ )
FLOW PARAMETER FLOW PARAMETER 4/
/p rron 1 eue % FROM
cL, Py/Pp oot | R smoomn | CUD | e b *R SMOOTH
LAND CLEA | PRESSURE K 15 3sc| LAND _a_"‘ 15, sec LAND
ROUGHNESS cm Eu. RATIO s ¢ 8eC Y RATIO s g 8€C '
smooth .013 .005 2.0 .0277 .36 3.0 .028¢ .368
(Basaline) . 025 .010 .0272 .358 .0280 .368
0.8 um .0S1 .020 .0277 365 .0205 L3718
(30 pin.)
RMS
Medium Rough .013 .005 .0214 .281 -23.0 .0243 320 13.0
6-10 um .025 | .010 .0244 321 -10.3 .0258 L339 - 7.9
(250~400 uin.) | .08} ' .020 .0263 .346 - 5,2 .0270 . 358 - 5.3
RMS
Rough .013 .00S .0353 464 +27.1 .0369 . 485 +31.8
18-28 um .02% .010 ,0290 .381 + 6.4 .0306 .403 + 9.5
{700-1100 uin.)} .051 .020 .0279 .367 + 0.5 .0293 . 386 + 2.9
RMS o
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TABLE 5. EFFECT OF LAND ROUGHNLSS ON SINGLL KNIFE
STRAIGHT-THROUGH LABYRINTH SEAL PERFORMANCE.

R - —
. ¢, vota
FLOW PARAMETFR Q:é: FLOW PARAMETER ;:ég
cL, Py/Pp y | by ogd | smoomH | Py/Pp y lbm°R5 SMUUTH
LAND CLEARANCE PRESSURE| kg-K m___ LAND | PRESSURE | kg-K - | vanp

| ROUGHNESS cm in. RATIO NS B¢ sec % RATIO NS Tbe sec ¥
— e
Smooth .013 L00% 2.0 .0323 .425 3.0 0327 .430

(Baseline) .025 .010 .0325 .427 .0341 . 448

0.8 um . 051 .020 .0315 .415 .0337 .444

(30 uin.)

RMS
iﬂndlum Rouah 013 . 005 .03¢e7 .483 +13.6 L0372 L4940 t1d4.u
6-10 um .025 .010 L0319 .420 - 1.6 .0328 431 - 3.8
(250-400 win.) |.051 .020 L0314 .413 - 0.5 L0338 .445 v 0.2
RMS

Rough .013 . 005 .0414 .545 +28.7 .0422 .55 +29.1
18-28 um .025 .010 .0364 .479 +12.2 L0376 . 495 +1u.b
(700-11006 win.)[.051 .020 .0325 . 427 + 2.9 .0345 .454 + 2.3
RMS

TABLL 6. "ABRADABLE A" POROSITY AND SURFACE ROUGHNESS RESULTS

CL, CLEARANCE | _.013 cm(.005 in.) .025 em(,010 1n.) 2091 em(,020 an.) ]
PRESSURE RATIO 270 3.0 7.0 3.0 70 3.0
(1) A, Porosity .000226 .000306 .000226 .000306 .000226 .000 300
(.00460) (.00625) {(.00460) (.00625) 1.00460) (.00625)
(2) <A, Surface .000432 .000493 .000989 .001044 .002131 .002186
Roughness (.00882) (.01005) (.02016) (.02129) (.0434b) (.04459)
(3) ¢A, Porosity + .000658 .C00799 .001214 .001350 .002357 .002493
Surface (.01342) (.01630) (.02476) (.02754) (.04806) (.05084)
Roughness
{4) ¢A, Measured .000716 .000780 .00121 .00132 .00247 .00262
“Abradable A"{{.0146) (.0159) (.0247) (.0269) (.0504) (.0534)
Land
A pA
(5)'7R’ From the -B.1% +2.5% +0.2% ~2.4% -4.6¥ -4.8¢
! Measured
Land
w/TU kq+KY% [1lbp °RY
A = 6—— , Flow Factor - ;Ti?s SSETIET;

u

(1) ¢A measured on "Abradable A" land at CL = 0.0
(2) ¢A measured with artificially rough, solid land, 9um (3%0u 1n.) RMS.

{3) Sum of the individual flow factors for porosity leakage and surtace rouyhness luvakage,
Ry * Ry

{(4) Flow factor, A, measured for the "Abradable A" land.

B0A W5y - Ay,

(5) —
oA *hiq)
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TABLE 7. “ABRADABLE B" POROSITY AND SURFACE ROUGHNESS RESULTS

CL, CLEARANCE .01? em(.C0S in.) .025 em(.010 an.) . N51 cm(.020 1in.)
PRESSURE RATIO 2.0 3.0 2.0 3.0 2.0 3.0
-
(1) ¢A, Pcrosity .000356 .000434 .000356 .000434 .000356 .000434
(.00725) (.00886) {.00725) (.00886) (.00725) (.00886)
(2) 9A, Surface .000714 .000747 .001173 .001241 .002261 .002377
Roughness (.01457) (.01523) (.02393) (.02531) (.04610) (.04848)
(3) (e, Jorosity + .001070 .001181 .001529 .001676 .002616 .002812
Surface (.02182) (.02409) (.03118) (.03417) (.053135) (.05734)
Roughnes
(4) ¢A, Measured . 000901 .000981 .001392 .001487 .002531 .00207Y
"Abradable B"(.01837) (.02000) (.02839) {.030133) (.05162) (.05464)
Land
(5) éﬁ%, From the +18,8% +20.5% +9.8% +12.7% +3.4% +4.9v
¢ Measured
Land
A - w./TU N - kg-K4 [1lbp °RL4 )
A = 6;—_' t'low Factor, 57KPa \Sec psia
(1) ¢A measured on "Abradable B" land at CL = 0.0
(2) ¢A measured with artificially rough, solid land, 22.9um (900u 1in.) RMS,
¢3) Sum of the individual flow factors for porosity leakage and surface roughness leakage,
¢A + oA .
(1) (2)
(4) Flow factor, ¢A, measured for the "Abradable B" land.
(51 SRR T Ry
oA A ()
TABLE 8. EFFECT OF ROTATION ON THE PERFORMAWCE OF FOUR KNIFfL STRALIGNT SEALS
AT A PRESSURE RATIO = 2,0 WITH A SMOOTH LAND AND AN ABRADABLE LAND.
KP, CL, ]
LAND Knife Pitch Clearance Flow Parmeter" |77 R ]
. R Fram Static Pertonmance
cm in. ! an | in. el °R At Knife Tiy Speed
°® 1b, sec
Static V=80 m/s8 V=159 nvs V=21 /s
Knife Tip (26) ft/mec)| (523 ft/sec)| (785 ft/sec)
SOLID-SMOOTH 279 110 .025 .010 .0266 .350 -2.6 -6.0 -8.9
L0511} .020 .0283 . +1.3 -1.% -6.7
"ABRADABLE A" 279 J10| .025) .010 -027% .362 -1.6 -5.% -9.9
L .051 | .020 -0280 -368 -0.8 -4.6 -10.3
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Rub Grooved Abradable Land Evaluation. At the completion of the 2D rig
abradabTe Tand testing, the "Abradable A" porous material land was
grooved to simulate an "in service" interference rub from the four knife
straight-through seal. The grooves were cut .025 cm (.010 in.) deep and
.051 cm (.020 in.) wide. A sketch, illustrating the grooving procedure
is presented in Figure 34, and a photograph of the grooved land is pre-
sented in Figure 35. The baseline four knife straicht-through seal,
pitch = ,279 cm (.110 in.), was used for testing the grooved land. The
test evaluation was conducted for clearances of .013 cm (.005 in.},

.025 cm (.020 in.), and .051 cm (.020 in.) with the axial position of the
seal knife relative to the groove at:

(1) .025 cm (.010 in.) and .013 cm (.005 in.) forward of the groove,
(2) over the groove,

(3) .013 . (.005 in.) and .025 cm (.010 in.) aft of the groove,

(4) midway between grooves at .140 cm (.055 in.).

The results from the 2D rig grooved abradable land leakage tests are pre-
sented in Figures 36, 37, and 38 for the clearances tested. The non-
grooved land and the solid-smooth land performance has been included for
comparison.

The test data indicate that grooving the abradable land significantly
reduces the leakage flow. The leakage at .025 cm (.010 in.) and .051 cm
(.020 in.) clearances was reduced to, or slightly below, the levels of
the solid-smooth land. This result implies that the grooves act to block
the leakage through the material. The increased leakage caused by the
material porosity that is associated with many abradables may be avoided
by properly grooving the land surface.

Tables 9, 10, and 11 compare the solid-smooth, non-grooved abradable,
and grooved abradable lands performance quantitatively. The tabulated
results show that the grooved "Abradable A" land leakage is frequently
reduced to less than the solid-smooth land, especially when the knife is
operating axially displaced from the groove. It appears that the rough-
ness of this land could have contributed about 7% reduction in leakage
based on surface roughness tests with smooth to rough land counterparts.

The "Abradable A" material was also evaluated at .025 cm (.010 in.)
clearance in a 3D rig land for the static and dynamic effects of inter-
ference rub grooving. The land was inftially grooved 1020 circumfer-
entially to simulate a partial interference rub. This land was tested in
the 3D seal test rig using the baseline four knife straight-through seal
rotor, pitch = .279 cm (.110 in.), v.th the seal knives located at:
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(1) .025 cm (.010 in.) aft of the grooves,
(2) over the grooves,
(3) .025 cm (.01G in.) ahead of the grooves.

The partial grooves were then extended around the full 3600 circumfer-
ence, and the land was retested as described for the 1020 grooving.
Photographs of the 102° grooves and the 3600 grooves are presented in
Figures 39, 40, and 41. The grooves were cut into the 3D rig abradable
land with a rotating single-knife cutting wheel in a manner similar to
that used on the 20 land. To ensure accurate snacing of the rub grooves
in the land relative to the rotor knives, the knife spacing on the test
rotor was measured on a 10X size digital output shadowgraph which gave
measurements within + ,00064 cm (+ .00025 in.).

Table 12 summarizes the grooved abradable land leakage performance at a
pressure ratio of 2.0 for the 1020 and 360° rub grooves. The rub

groove leakage performance change from the non-grooved land performance
is also included. A plot illustrating the grooved land performance
change from the non-grooved land is shown in Figure 42. The 1029 rub
grooves caused the leakage to increase slightly when the knives were
located .025 cm (.010 in.) aft of the grooves. The leakage then de-
creased as the knives were moved over the rub grooves and, finally, ahead
of the grooves. The minimum leakage, at static and dynamic rotor condi-
tions, was produced with the knives ahead of the groove. The 3600 rub
grooved land performance indicates little change in leakage (statically
and dyramically) for the knives located aft of the grooves. Leakage was
reduced to a minimum (-7X) with the knives located cver the grooves and
increased slightly for the seal knives located forward of the grooves.
The performance variation with axial position of the seal knives is
similar to the 2D rig results, except for the knives located aft of the
grooves.

One possible cause for the relatively higher leakage with the knives aft
of the grooves is the increased potential for porosity leakage through
the backface of the land (see Figures 39 and 41) as the flowpath through
the abradable material is shortened. This leakage path can be eliminated
by providing a solid wall enclosing the backface of the abradatle land.
The hardware design for the 2D rig used this approach. Test data from
the 2D rig showed that grooving reduced leakage and that leakage was in-
sensitive to the axial position of the knife when it was out of the
groove,

..

The grooved abradable land individual flow parameter curves for the 2D
and 3D rig tests are included in Appendix C.

52



FIGURE 34.

2D RIG ABRADABLE LAND GROOVING PROCEDURE

.060 cm

0.025cm
(0,024 in, {0,010 in,)

0,051 cm
(0,020 in, )

~— ABRADABLE LAND

FIGURE 35. "ABRADABLE A" LAND WITH SIMULATED RUB GROOVES
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FIGURE 36. EFFECT OF KNIFE AXIAL POSITION WITH RESPECT TO RUR GROOVES

IN A 2D TEST RIG "ABRADABL: A" LAND AT A CLEARANCE = .013 cm (.005 in.)
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FIGURE 37. EFFECT OF KNIFE AXIAL POSITION WITH RESPECT TO RUB GROOVES

IN A 2D TEST RIG "ABRADABLE A" LAND AT A CLEARANCE = .025 em (.010 in.)
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FIGURE 38. EFFECT OF KMIFE AXIAL POSITION WITH RESPECT TO kUB GROOVES

IN A 2D TEST RIG "ABRADABLE A" LAND AT A CLEARANCE = .05 ¢m (.020 in.)
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" FIGURE 39. "ABRADABLE A" LAND WITH SIMULATED
FOUR KNIFE ROTOR RUB GROOVES

Grooves Cover 102° of Seal Periphery
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FIGURE 40." ABRADABLE A" LAND WITH SIMULATED
FOUR KNIFE ROTOR RUB GROOQOVES

Grooves Cover 102° of Sec! Periphery
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FIGURE 41. YABRADABLE A" LAND WITH SIMULATED
FOUR KNIiFE ROTOR RUB GROOVES

Grooves Cover 360 ° of Seal Periphery
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FIGURE 42. EFFECT OF RUB GROOVING ON THE LEAKAGE OF A FOUR
KNIFE STRAIGHT SEAL WITH AN "ABRADABLE A" LAND
AT A CLEARANCE OF ,025 cm(.010 in.)
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TABLE 9, COMPARISON OF SOLID-SMOOTH, NON-GROOVED ABRADABLE, AND GROOVED ABRADABLE

LAND PERPORMANCE AF 0130 M { A0S IN } CLEARANCE TN THE 2D TEST RYG

AL E
KNIFE-TO- 'ROM A
GROOVL ' 50L1D~
LAND AXIAL PREGSURE FLOW SMOOTH
TYDPE POSITION® RATIO PARAMLTLR LAND
cm (in.) kg -Kh (lpm *RY 1
Nes ibg sec
Sotid=-Smooth 2.0 0277 (.365)
1.0 .0279 (.368)
Non=-Grooved 2.0 .035) (.465) +27.4
"Abradable A" 3.0 .0384 (.50%) +37.4
Gtooved ~.025 (-.010) 2.0 044 (.321) -12.1
"Abradable A" -.01) (-.00%) .0267 (.351) - 3.8
0.0 .0305 (.401) + 9.9
+. 013 {+.005) L0247 (.325) -11.9
+.02% 1+.010) L0237 (.312) -14.5
-.025% (-.010) 3.0 0282 1,371 + 1.0
-.013 (-.005) .0298 (.392) ¢+ 6.7
0.0 L0340 (.447) +21.6
+.012 (+.005) . 0306 (.402) + 9.4
+,025 (+.010) .028) (.373) + 1.5

* The zero roforence for knife-to-qroove axial position 1s taken where the knife
Positive (+) axial position denotes the knife tip
upstream from the land rub groove, and the negative (-) axial position denotes

tip is over the rub groove.

the knife tip downstream from the land rub groove.

TABLE 10. COMPARISON OF SOLID-SMOOTH, NON-GROOVED ABRADADLYE, AND GROOVED ABRADABLE
LAND PERFORMANCE AT ,025 CM (.010 IN.) CLEARANCL IN TUE 2D TLST RIG

Ap/¢
KNIFE-TO- FROM A
GROOVE ¢, SOLID-
LAND AXIAL PRESSURE FLOW SMOOTH
TYPE POSITION® RATIO PARAMETER LAND
om (in.) kg-!j lbm °RYy \
L1 ( [ loc)

Solid=Smouth 2.0 .0272 (.3%8)

3.0 L0279 t.368)
Non=Grooved 2.0 0299 (.39)) + 9.8
“Abradable A* 3.0 .0328 (.428) +16.5
Grooved -.02% (-.010) 2,0 .02%0 {.329) - R,1
"Abradable A" -.013 (~.009%) .025%9 (.341) - 4.8
0.0 .0247 (.32%) - 9.2
+,013 (+.00%) 0242 (.318) -11,2
+.028% (+.010) 0246 {(.324) - 9,8
-,02% {~.01G) 3,0 0279 (.367) - 0.1
-.013 (~.008) 0282 .3 + 1.0
0.0 .0280 (.369) + 0.4
+,013 {+.00%) .0272 {.3%8) - 2.6

4,028 (+.010) 0274 (.360)

* The 2ero reference for knife-to-groove axial position is taken where the knite
sition denotes the knite tip|

tip is over the rub groave.
upatream from the land rub groove, and the negative (~) axial position denctes

Positive (+) axial

the knife tip downstream from the land rub groove.

L \,‘w
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TABLE 11. COMPARISON OF SOLID-SMCOTH, NON-GROOVED ABRADABLE, AND GROOVED ABRADASLE
LAND PERFORMANCE AT .051 CM (.020 IN.) CLEARANCE IN THE 2D TEST RIG
84/¢
KNIFE-TO- FROM A
GROOVE ¢, SOLID-
LAND AXIAL PRESSURE FLOW SMOOTH
TYPE POSITION* RATIO PARAMETER LAND
cm (in.) kg Kl lgm °RY L3
N-s ( f aec)
Solid-Smooth 2.0 L0277 (.365)
3.0 .0285 (.375)
Non-Grooved 2.0 .0305 (.401) + 9.
"Abradable A" 3.0 .0323 (.425) +13.13
Grocved -.025 (-.010) 2.0 .0259 (.341) - 6.6
"Abradable A" -.013 (-.005) .0264 (.347) -~ 4.9
0.0 .0264 (.348) ~ 4.7
+.013 (+.005) .0261 (.344) - 5.8
+.025 (+.010) .0259 (.341) ~ 6.6
-.025 (-.010) 3.0 .0281 (.370) - 1.3
-.013 (-.005) .0286€ (.376) + 0.3
0.0 .0285 (.375) 0.0
+.013 (+.005) .0280 (.369) - 1.6
+.025 (+.010) .0281 (.370) -13
* The zero reference for knife-to-groove axial position is taken where the knife
tip is over the rub groove. Positive (+) axial position denotes the knife tip
upstream from the land rub groove, and the negative (-) axial position denotes
the knife tip downstream from the land rub groove.

TABLE 12, EPFECT OF RUB GROOVING ON LEAKAGE USING A POUR KNIFE STRAIGHT SEAL WITH "ABRADABLL A" LANY
—_———— . e .- C - - -
Pitch = ,279 em (.110 airn.) ¥rife Heigut = ,279 ¢r (110 an.
Clearance = .025 ur (.013 in.) Pressure Ratic = 2.0
Xnife-70-
Fub Groove Groove Axial V, Knife Tip Speed, m/s (ft/sec)
Central Angle, location®,
degrees em  {(in.) 0.0 - Static ! 80 (261) [ 159 {521} l 49 (/8%)
174
!ﬂ A x1/2 lbm *R
¢, Airflow Parametes, . 8 ib,  sec
d
0.0 (Nongrooved) 0275 {.362) (0273 (,356) .026J .342) .0249 {.326)
+.02% (+.010) 0278 (.362) 0271 {.356) .02359 (.340) L0248 (.323)
102 0.0 .0277 (. 364) .0271 1.357) G258 (.340) L0245 (.333)
-.02%  (-.010) <0280 £.369) 20275 (.362) (02364 (.347) 20283 _ (.333)
+.0:5 (¢+.010) 0250 (. 340) .028) (.313) 0244 (.321) 0236 {.310)
360 0.0 0256 (.3 .0350 {.329) .Q242 [ 2% } 0430 (.303)
=.025 _ (-.010) 20271 1. 387) 20267 {,381) .0239 {.341) (0249 {;328) |
(¢grooved * *mongrooved/ongscoved o Relative Flow Change, A
4,025 (+.010) 0.0 0.0 0.6 -0.9
102 0.0 +0.6 +0.3 0.6 0.9
=.03% (-.010) 41,9 +}.7 +1.5 +2.1
+.028 (+.010) -6.1 6.5 ~-6.1 -4.9
360 .0 -6,9 -7.6 7.0 ~7.1
-.028  (-.010) -1.4 -1.4 0.3 .k
*The 2010 reference for knife-to-groove axial position is taken where the knife t.p is ove: thes rul yroove.
Positive (+) axisl position denctes the knife ug upstrean from the land rub groova, and the negdtive (=,
axial position denotes the knife tip downstrean from the land rub groove,
L - e - [
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Honeycomb Lands Evaluation. Three honeycomb lands with cell sizus of .079
cm (.031 in.), .159 cm (.062 in.), and .318 cm (.125 in.) were evaluated
for leakage in the 2D seal test rig. The cell depth and wall thickness
were .381 cm (.150 in.) and .0076 cm (.003 in.), respectively. Each
honeycomb land was tested with the baseline four knife straight-through
seal at three clearance values: .013 cm (.005 in.), .025 cm (.010 in.),
and .051 cm (.020 in.). A photograph showing the 2D honeycomb lands is
presented in Figure 17.

The honeycomb land flow parameters, presented in Figures 43, 44, and 45
for the three clearances tested, were obtained up to the maximum facility
supply pressure. The purpose of testing Lo high seal pressure raiios was
to verify the unusual trend of the flow parameter near the -hoking point.
Figure 43, which illustrates the .013 cm (.005 in.) clearance tests, shows
the flow parameter decreasing from its maximum as pressure ratio is in-
creased beyond the critical value. The .025 cm (.010 in.) clearance
tests, shown in Figure 44, indicate a similar effect at the largest cell
size, however, the flow parameter decrease is much less than for the lower
clearance. This phenomenon was not evident at the highest clearance
tested, .051 cm (.020 in.).

A possible explanation for the flow parameter characteristic of the
honeycomb land as pressure ratio is increased at the .013 cm (.005 in.)
and .025 cm (.010 in.) clearances tested could be predicated on an
increased level of turbulence within the knife seal cavity resulting from
the flow disturbance generated by the honeycomb cells. This flow field
variation could cause the flow parameter to pass through a maxima.

The aerodynamic flow area between the knife edge and honeycomb cell could
undergo changes with local pressure and Mach number, also. As the seal
pressure ratio increases, the flow may have less tendency to expand into
the honeycomb cell, particularly for the smaller cell sizes. This action
would have the effect of reducing the aerodynamic c¢learance. Figures 43,
44, and 45 show that the flow parameter falls off less in absolute magni-
tude as the honeycomb land cell size is reduced.

A comparison of the smooth and honeycomb lands is presented in Table 13.

A honeycomb land can reduce leakage up to 20% at .051 cm (.020 in.) clear-
ance. However, at .013 cm (.005 in.) clearance the two larger cell size
honeycomb lands leaked almost twice as much as a smooth land. Therefore,
it can be concluded that a honeycomb land may be employed to reduce seal
leakage but with consideration given to the operating clearance and the
honeycomb cell size selection.

o

Cell Depth Effect on the Honeycomb Lands. The honeycomb land cell
depth effect on seal leakage was also investigated on the 2D air seal test
rig. Two depths, .254 cm %.100 in.) and .127 cm (.050 in.) were evaluated
in addition to the cell depth of .381 {.150 in.). The hcneycomb cell
depth was decreased by laying a strip of wax of the desired thickness onto
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the honeycomb land, forcing it down into the land cells, and then apply-
ing heat to melt the wax. The liquid wax wicked into the corners of ti:
cells and solidified at the pred2termined depth. Testing was conducteo
using the baseline four knife siraight-through seal. The results are
summar ized in Figures 46, 47, and 48 for the .013 cm {.C05 in.), .025 cm
(.010 in.), and .051 cm (.020 in.) radial clearances, respectively.

Figure 46 shows that a cell depth of .254 cm (.100 in.) is optimum for
the .079 cm (.031 in.) cell honeycomb at .013 cm (.005 in.) clearance.
The two larger cell honeycomb lands indicated higher flow than a smooth
Tand, thus they would not be used at .013 cm (.005 in.) clearance to
reduce leakage.

Figure 47 shows an optimum cell depth of .254 cm (.100 in.) for the .079
cm (.031 in.) and the .156 cm (.062 in.) honeycomb cell sizes at .025 cm
(.010 in.) clearance. The large cell honeycomb again indicated higher
flow than a smooth land. The .079 cm (.031 in.) cell size honevcomb
produces the minimum leakage of those tested at .025 cm (.010 in.)
clearance.

Figure 48 shows that the optimum hcneycomb land cell depth at .051 cm
(.020 in.) clearance is .254 cm (.100 in.) for the three honeycomb land
cell sizes tested. However, the minimum leakage honeycomb is the .318 cm
(.125 in.) cell size at .051 cm (.020 in.) clearance.

The effectiveness of honeycomb material in reducing straight-through seal
leakage appears to be a function of the cell depth and the ratio of cell

s1ze to clearance. The data obtained from these tests indicate that the

optimum cell depth is .254 cm (.100 in.) when the cell size to clearance

ratio is less than about 6.2.

Seal Rotation Effect on the Honeycomb Land. A honeycomb land design
was also evaluated on the 3D air seal test rig. A cell size of .159 cm
(.062 in.) and & cell depth of .254 cm (.100 in.) were selected for test-
ing at radial clearances of .025 cm (.010 in.) and .051 cm (.020 in.).
The honeycomb cell size and depth selections were based on the 20 rig
test results and the range of clearances to be evaluated in the 3D rig
tests.

The static and dynamic test results with the baseline four knife straight-
through seal are presented in Figures B-15 and B-16, Appendix B. Tiese data
at a seal pressure ratio of 2.0 are summarized in Table 14. The smooth land
test data are also included for comparison purposes. At .025 cm (.010 in.)
clearance, the initial effect of rotation on the honeycomb land is to reduce
leakage relative to the static level. As rotational speed increases, the
leakage increases slightly above the static level. The .051 cm (.020 in.)
clearance results, however, show the honeycomb land leakage decreasing
slightly at each speed condition tested.
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The 3D rig static test results for the honeycomb lands at a 2.0 pressure
ratio show 5% less leakage than the smooth land at .025 cm (.010 in.)
clearance. However, seal knife rotational effects cause the honeycomb
Tand leakage to increase with knife tip speed until a leakage 7% higher
than the smooth land occurs at 239 m/s (785 ft/sec). The honeycomb land
at .051 cm (.020 in.) clearance shows about 25% less leakage than the
solid-smooth land, both statically and dynamically. These results are
summarized in Table 15, which also includes a comparison of the 3D rig
abradable land performance.

A comparison of the 2D rig and 3D rig honeycomb land test results shows
excellent agreement at .051 cm (020 in.) clearance. At .025 cm (.010
in.) clearance, the honeycomb land shows a variation in performance level
between the 2D and 3D rigs. This variation might mean that the location
of the seal knife edge relative to the honeycomb cell sidewall is an in-
fluential parameter at small clearances. Additional testing may be war-
ranted with the .025 cm (.010 in.)} radial clearance honeycomb land to
investigate the performance difference between the 2D rig and 3D rig test
results.
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FIGURE 46.
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FIGURE 47. EFFECT OF HONEYCOMB CELL DEPTH ON FOUR KNIFE STRAIGHT SEAL LEAKAGE
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TABLE 13. COMPARISON OF SMOOTH AND HONEYCOMB LAND PERFORMANCE AT PRESSURE RATIOS OF 2.C AND 3.0
2-D Rig, Seal Confiquration:
Four Vertical Knives
Patch = ,279 an (.110 1n.)
Knife Height = .279 cm (.110 1in.)
Knife Edg: Thickness = .025 1,038 am (.010 . ,015 in.)
Land Cell Depth = .38l am (.150 in.)
NJTE: + Indicates leakage greater than smooth land at cawparable clearance
- Indica.>s leakage less than smooth land at comparable clearance.
A/ MY
- Pressure ¢, From Pressure ¢, From
Land Type Clesrance Ratio Flow Parameter Smooth land | Rat:o Flow Parameter | Smooth Land
o in. E-K; T :!—!‘; . B-_lg‘f u:m-n .
N-s ;F——fiec N«s E.f;s_c_
Smooth .013 .005 2.0 0277 .365 0.0 3. L0279 .68 c.0
.025 0.0 2.0 L0272 .358 0.0 3.0 .0279 .68 6.0
. .051 .020 2.0 .0277 . 365 6.0 + 3.0 %.0285 Lo .00}
Honeyoarb .013 .005 2.0 .0264 2347 -4.9 3.0 .0271 .356 -3.1
079 am(,031 1d| 025 .010 2.0 .0240 .36 -11.7 3.0 .0249 .328 ~10.7
Cell 051 020 2.0 0242 .319 ~12.6 3.0 .0244 .321 ~14.4
e e — ~ 4 boo— ——— A
Hanevoarb 013 .005 2.0 .0345 .454 +24.4 3.0 .0359 472 +28.4
L1599 cm(.062 )| -025 .010 2.0 .0252 .33 - 1.5 3.0 .0263 .46 - 5.9
Cell .051 .020 2.0 L0219 .288 -21.1 1.0 0227 299 -20.3
Womeycarks | .013 | .005 | 2.0 0544 | .76 +96.2 T30 0548 | 721 +96.2
.38 anf. 125 ] 028 010 2.0 0302 . 398 +11.2 3.0 L0317 417 *135
Call 051 | .oz 2.0 0226 J “208 a4 30 o | s | s
—— _ . — .
ABLE 14. LFFECT OF ROTATION ON THE PERFORMANCE OF A FOUR KNIFE STRAIGHT SEAL
AT A PRESSURE RATIO OF 2.0 WITH A SMOOTH LAND AND HONEYCOMB LAND
K, L, $,
Knife Pitch C'earance | Flow Parameter M/ NN
om i in. { am in, _yﬂ-l(" 1b "1?’ From Static Performance
Land Voo | posss At knife Tip Spexd, v
Static B0 /s | V=150 w/s [V=230 W
V=0.0 (261 ft/sec)|(523 ft/eec)i(785 ft/sec)
Solid-Smooth 279 .110 §.025 .010 | .0266 | .350 -2.6 -~6.0 -8.9
.051 .02¢ {.0283 | .372 +1.) -1.9 -6.,7
e JESN SNSRI SR
159 am (.062 in.) 279 .110 |.025 .010 | ,0253 | .333 -1.2 -1.2 +2.%
Cell Honeyoomb J051 .020 | L0205 | .270 -0.7 -2.2 -2.6
—- L —— e e e
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Optimum Pitch Studies. An experimental study was made to determine if
rotation of the seal knife affects the optimum pitch dimension for a con-
ventional straight-through labyrinth seal. The optimum knife pitch value
has historically been established from static rig tests. The optimum
design pitch is defined in this context as the combination of knife pitch
and number of seal knives that provides the lowest leakage at a specified
clearance and fits within a specific axial envelope. Using a four knife
straight-through seal configuration with a .025 cm (.010 in.) radi-~1
clearance, t'.e optimum pitch was calculated to be .279 cm (.110 in.) from
the static design parameter, pitch/clearance = 11. Four knife straight-
through seal rotors with pitch values of .203 cm (.030 in.) and .356 cm
(.140 in.) were also selected for dynamic testing to provide performance
informatio. -~ each side of the optimum pitch seal. The lands evaluated
included the smooth, abradable, and honeycomb configurations at .025 cm
(.010 in.) and .051 cm (.020 in.) radial clearances which were tested in
the 2D rig segment of Task I. A1l tests in this 3D rig segme.t of Task I
were conducted statically and rotationally at 80 m/s (261 ft/sec), 159
m/s (523 ft/sec), and 239 m/s (785 ft/sec) knife tip velocities.

The solid-smooth, the "Abradable A", and the horeycomb land test results
for the three knife pitch values are plotted 1 Figures 49, 50, and 51,
respectively, to show the similar performance characteristics at static
and dynamic conditions. Differences in seal leakage do result from rota-
tional effects, but the similarity in flow parameter change with knife
pitch from static and dynamic tests indicates that rotation does not
significantly affect knife optimum pitch for any of the seal lands
tested. The solid-smooth and abradable lands generally show a continuous
decrease in the leakage characteristic as pitch increases. The honeycomb
land displays a distinct minima in flow parameter at the .279 cm (.110
in.) knife pitch.

These results are cross-plotted in Figures 52 and 53 to show the simi-
larity in the effect of knife pitch on the performance of seals with
solid-smooth, abradable, or honeycomb lands. Figures 54, 55, and 56 show
the influence of rotation on the seal performance with solid-smooth,
abradable, and honeycomb lands, respectively. The second-order effect of
rotation on knife pitch is reconfirmed, also., The individual flow param-
eter curves are included in Appendix B,

Review. The complex nature of labyrinth seal performance and the asso-
ciated difficulty of predicting performance without adequate knowledge
based on test data have been verified by the experimental jrogram. The
use of abradable and honeycomb seal lands is a relatively recent develop-
ment. The prediction of leakage performance for these newer scal mater-
fals is based on a limited amount of test data and the assumption of
characteristics developed for solid-smooth lands. A sum ..y of the static
pertformance and rotational effects on the seal leakage characteristics for
the representative abradable and honeycomb land materials is presented
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with the solid-smooth land performance in Table 16. A comparison of the
abradable and honeycomb lands relative to a solid-smooth land is presented
in Table 17 for static and dynamic conditions. The comparable 2D rig test
results are also included in this table. Figures 57 and 58 are plots of
the relative performance deviation from the solid-smooth land.

75

o emese ek e

«

s

.



B it ]

("ul) wo- HD11d 34NN - d)

(ort-0) {o11°0) (080°0)
| 1 )
0SE°0 00£°0 052°0 00Z°0
i | ] 1
O:Illll
I,,I
?,

(*v1 020°) w2 1§0°0 = IDNVYV3TD

(*u)) w2 - HOLId HINN - 4

(29%/1) 682) S/ 6€T —— —

(DI1vis) 0

AS.. *0) 6___ *0) aa_v.e
0S€°0 00£°0 05Z°0 00Z°0
1 1 ) 1 —(z°0)
ﬁﬁo.
-
-—(0c°0)
- 620°0
—(S£°0)
- 0£0°0 .
= 10r°0)
(*v1010°0) W2 620°0 = IDNVIVITD
-
—(s¥'0)

Q3345 di1 3JINJ - A

0°C = OlLVYd 3MNSSTUd LV TV3IS V1 LHOIWVELS I4INN #

IDONVWIOLEId TvIS ANVT HLOOWS-QITOS NO HOLId 3JINY 40 103443

‘6% NI

b

A

o —¥4313W VAV MO = ¢

QI) /1

4
W

1\

(

T ——TT g et

DRICGINAL PAGE 18
OE REOOR QUALITY

76



(‘u) WO =HDL N -GN

(orL"0) S_”.e am_..e av__.e a.__.e 84.2
|
0SE£°0 00€°0 052°0 00Z°0 %E°0 00" 0 05Z°0 00Z°0
4 1 2 i | 1 1 1 —(sz°0)
-0Z0°
- —(cc"0)
. IIII:Q & e - 20"
S ~
o \ :
N N, —(se°0)
\ b
\
\
\
/
L oe0°0
—(oy'0)
(*u1 020°0) US 1S0°0 = IDM" VAVIID (*v1 010°0) w° 6Z20°0 = IDNWVIVITD
(29%/1y G87) 3/W 6€L — ——
{(OI1vis) ‘o —(s¥°0)

Q334S dIL 33NN - A

(v ud = HO1Id FIN ~ dN

0°CZ = OlLW¥ 3¥NSSIYd LV TVIS GV LHOIVYLS IJINN ¥

IDNYWIOHYId VIS ANV .V JT18VAVEEVY. NO HOIId 34INN 4O 103443 0§ NOI4

=N

om ’m)
w

Z/l" wq)

N - By - $313WWIVd MO1d — ¢

(

77

B T



("ug) wo - HOLId FAINN =

(or1°0) {c1L°0) (080°0)
! | |

0SE°0 00£°0 052°0 002°0
1 1 L 1

WT“‘I“II'II'?"

(*u1020°0) W 150°0 = IDNVIVITD

(*ui) up - HO1id I4INA - A

(295/4 682) 8/W 6ET ===~

(onvisyo —

(or1°0) a___.e (080°0)
| |
0ge°0 00€°0 05Z2°0 020
1 1 1 1 —(52°0)
L 020°
- —{(0c"0)
- ¢20°
—(sc"0)
’ e
[ (0£0°0)
(*u1 010°0) W° §20°0 = IDNVAVITD —(or")
—(s¥-0)

Q3345 411 NN - A

4334 ("vt 00L°0) WP $6Z°0 ‘aWODIAINOH 113D (“uL Z90°0) W2 651 0

0°Z = OI1vY IWNSSIYd 1V TV3S V1 LHOIVYLS IAINN ¢

IDNVWIOHYId TVIS ANV +EWODAINOH NO HIIId 34INM 4O 123443

1S N0

- ¥31INVEVd MO — ¢

SN
el

)

w

ses Jq)
/ Y% A9

<¢

OF POOR QUALITY,

ORIGINAL PAGE IS

78



(u) WO = HOLId 4NN = 4N

_ (o1 __.e (080°0)
]

: 00Z°0
1

(393/1) 68/) s/w €T = A
a33dS diL I4INI WNWIXYW

(*uY) w2 = HOLid N ~ dX

ANV .V 1gvaviav. O
AGNV1 SWODAINOH O
ANV HLOOWS O

Sv_. 0 o11°0) (080°0)
| |
Sm.o Sm.o 052°0 00Z°0
. 1 —sz°0
- 0Z0°0
R
—(0c°0)
8 ﬁn«o.c
—(se°0)
-~ 0€0°0
0=A Sh.av.e
lvis
—(s¥°0)

0°Z = OILVY 3¥NSSIAd LV TVIS 8VT LHOIVYLS 34INM ¥

IONVWYOLEId Tv3S NO IDNVIVIID (“ut 010°0) W2 §Z0°0 1V HOLid 34INY 4O 113443

“ZS NNO

- ¥313WViVd #O4 —¢

N
z l)0"’!

'—l.

Sy
3y
N

Ne”

- we

L



(*ug wo =~ HDOLId IINN - dN

(o11°0)

(393/14 GBZ) S/v1 68T = A
a33dS dIL I4INX WAWIXWYW

(*uy) uo = HOLId IJINX - d

«V 318VaVEEV. O

GNV1 §WODAINOH O

ONV1 HIOOWS O

0°C = OLLVY 3¥NSSIYd LV TVIS V1 LHOIWINS I4INN +

6..__.9 6___.2 am_,.e
onhm.o Qx_...o onw..o Sm.o
- 4." —(cZ°0)
w. 50
Q\l‘AU/ m
.// .
/u - —(oe'w
~¢20°0
—(sc°0)
=~0€)°0
O=A |A°v.°v
DILvIS
- (5¥°0)
‘€S WNOI4

IDNYWIOH33d VIS NO IDNWVAIVITD (“ut 010°0) W2 [S0°0 1V HDLId 34INN 4O 123443

= ¥3LIWVIVd MOTd — ¢

SN
Ty

s0 dq)
2 “'ql) %

(

80



(993/4)) s/w - Q3°dS dIL 4NN - A (291 'y) s/w - Q33dS dIL IINY = A

(*008) A.o_oe A.ow& A.o_oc .w (*G0e) A.ows ..o_s A.o_&
1 {

0sZ 007 oS! o0l 05 0 0se o0 oSt 00t v
[ 1 1 1 1 L i 1 L 1

(*u! 0Z0°0) w2 150°0 = IDNVIVITD (*v1 010°0) ¥° SZ0°0 = IDNVEVITD

$ILIWVIVa MO ¢

{(*V1 OrL°0) WO 9GE"Q +me kP eme
(VL O11°0) W2 £L3°0 eveaOperee
(vt 080°0) wo g0Z*0 —O—

HOLId 34INN - dX

0°C = OlLvY 3¥NSSIAd LV TVIS BV LHOIVALS I4IN™ »

DNVYWIO4¥3d VIS ANV HIOOWS-AITOS NO NOUVIOY 40 'D3443 °yS INOIY

' SN

81

P AGE Ig
ALI’I’W

5
0
MR
mm
c&
L -
[~3
-
e
a
LA b3
\IJ []
-
v
>
=
N
[ ]
2



(298/4) s/w - Q334S dIL NN - A

..

(298, 44) s/ ~ Q33dS dil IJINN = A

A.Rws A.c"& A.oni A.o_oe .A_v \ “008) A.o"va (- o0r) (*002) 0
! ) | | |
052 002 o5t 001 0s 0 0sZ 00z 0s1 00l TS 0
1 1
L 1 1 _Ju\ 1 1 Zi-
m = O, -0l-
b..‘.’ ‘l."
aoanl = q - g
f r' 10?
/ - r-'l
- t...Nl
% f’ 0
B =T+
(*v1 020°0) W 150°0 = IDNVIVITD ! ("ut1 010°Q) 2 §20°0 = IDNWVIVITD e
¥313WVEVA MO ¢
ter0r1°0) ® 95E° 0 =P o
(v 011°0) WO 4£2°0 *++= Qoo
(*v1 060°0) WO £02°0 —— L -9+
HO1Id J4INX - dX

0°C = OIlLVY 3WNSSIHd LV TVIS SV LHOI7ELS AINX ¥

IDNVWAOHYId 1v3IS OGNV LV 318VGVEEV. NO NOILVIOY 40 113443

°SS WNOH

iS¢
% “oivis ¢ dIWYNAGH

82



(293/4) s/w - Q33dS dIL 33N - A

(vo8/)) s/w - G33dS dIL IJINX = A

A.owe A.o_oov A.ow& A.o_os (o) A.o_os A.o_os A.o_o& A.o_os .w
!
0sZ 002 ost 001 0s r4 051 1 0
L 1 i L 1 9 om Rwu 1 oor wm ‘Zl-
—"0l-
'-?
'o?
il aad
i
-0
-2+
("ut 020°0) W2 (S0°0 = IDNVIVITD (*u1 010°0) W2 620°0 = IDNVIVITD .
¥I1IWVEVY MO ¢ ‘o
(*ut O¥1°0) U 9GE"0 =ap-=r §
(*u1 OLL°0) WR 6£2°Q ===+ Cr-"
(*u1 080°0) W €02°C —— - "8+

d JINX = dX
d330 (*u1 001°0) W $¥5Z°0 “GWODAINOH 113D (*u! Z90°0) o 661 °Ox

07 = N1IVN WNSSIYd LV TV3S V1 LIHOIVYLS NI ¥

IDONVYWIOLEId TVIS ONVT EWODIASNOH NO NOILVIOY¥ 40 103343 "95 33NOI

d1Lvisd
% - JMVIS ¢ _JIWVNAG)

e o wEL T Bane - End

g




(*u) wd = HD1Id 3NN = d) (*ug) wd = HOL1d NN =

(ort) o)

_ | (080°) {ort°) oLt) (080°)
| i | |
0se” 00t" 0sZ* 002 05¢° 00€° 0sZ* 00Z°
1 1 1 1 1 L 1 1
-06-
'na.
.loo-..l
‘0
0L+
(°9%/4 §84) 5/ 6ET = A 0=A
Q334S dil JIINA WAWIXYW IILVIS
¥I1IWVIVE MO1d P 0c

WV 38VAVIEVY.
ANV1 SWODAINOH (O

0°Z=0I1V¥ 3NSSIYd LV TV3S 8V LHOIVYLS AN ¥

IDNWYVITD (Ul 010°) W2 GZ0" 1V IDNVWICHEId 1v3IS NO HDLld GNV IDVHINS ANV 40 13443

LS /NOI4

HLOOWS

84

ORIGINAL PAGE I

OR POOR QUALITY



(un) wo - 4OLId IJINX - dN (uy) wd = HO11d ISN - d) wn
a_z.v {oL1°) Ado.v (or1°) (o11°) (080°)
! l | 1
ose” 0og* 0sZ’ 00Z° 0se” oog* ose: 00Z°
1 1 1 1 L 1 1 1 .
80

= *0Z~
- oL~

\I] o

[~
HLOOWS ¢
LOOWS
H $-¢

0
¥I1IWVAVA MO - .
WV 318VaVEEV. O - R
ANV SWODAINOH O
(995/43 684) 3/w 4€Z = A 0T+
Q33dS dIL 33INY WAWIXYW 0=A DILVIS

0°Z =OI1Vd 3ANSSIYd LV TVIS VT LHOIVYLS 34INX ¥

IDNVEVIID (U1 0Z0°) WO [G0° LV IDNVWIOHYId TV3S NO HOLId ANV 3DV4INS ANV JO 103443 "gS JWNOH

Talided

o

P KA

R

N

gy

BB 2 Tk b v ro® M ohe asetn «



TABLE 16, EFFECT OF ROTATION ON 1HE PLRFORMANCE OF A FOUR KNIFE STRAIGHT SEAL AT A PRESSURE RATIO = 2.0

KP, cL, ¢,
LAND Knife Pitch Clearance Flow Parameter N/ v 8
T ., Fram Static Performance
am 0o pan fdin | okg-KT | bR At Knife Tip Speed, V
N-s 1besec
Static V=80 m/s V=159 m/s | V=239 Vs
v=0,0 (261 ft/sec)| (523 ft/sec)]| (785 fr/sec)
SOLID~SMOOTH .203 .080 § .025 | .010 | .0300 .395 -1.0 -4.6 -8.6
.051 | .020 | .0303 .399 +1.3 -2.5 -4.8
.279 L110 | .025 | .010 | .0266 .350 -2.6 -6.0 -8.9
.051 | .020 | .0283 372 +1.3 -1.9 -6.7
—— S ]
.356 .140 | .u25 | .010 | .0250 .329 -3.0 -5.5 -8.2
.051 | .020 | .0273 .359 +5.6 -2.8 -8.1
“ABRADABLE A* | .203 .080 | .025 | .010 | .0350 .460 -0.7 ] -5.4 -12,0
.051 | .020 | .031z .411 +0.7 -2.2 -6.3
.279 .10 | .025 | o010 | .0275 .362 -1.6 -5.5 -9.9
.051 | .020 | .0280 .368 -0.8 -4.6 -10.3
.356 .140 | .025 | .010 | .0269 .354 -0.9 -4.0 -7.9
.051 | .020 | .02n 357 -0.8 -5.0 -9.8
—————
.159 am(.062 in} ,203 .080 | .025 | .010 | .0290 .382 -1.3 -2.1 -2.1
Cell Honeyoamb .051 | ,020 | .0241 317 -0.3 -1.9 Jr—‘ -4.7 ]
.279 110 | .025 | .o10 | .0253 .333 -1.2 -1.2 +2.4
.051 | .020 | .0205 .270 -0.7 -2.2 -2.6
356 .140 | .025 [ .010 | .0271 .357 =0.8 0.0 S By A
| 081 | .020 | .0213 .280 -1.4 -2.5 -3.9

TABLE 17. COMPARISON AT A PRESSURE RATIO = 2.0 OF A HONEYCOMB AND AN ABRADABLE
LAND WITH SOLID LAND SEAL PERFORMANCE STATICALLY AND DYNAMICALLY

@ - A¢/¢ ~ V% FROM SOLID~SMOOTH LAND PERFORMANCE

LAD Knife Pitch | Clearance 2D RIG KNIFE TIP SPEED ~ 3D RIG T

an in.|em  in. R

Static | Static V=80 m/s | V=159 m/s | V=219 m/s
V=0.0 | (261 ft/mec)|(523 ft/sec) | (785 ft/sec)
S0l1d-Smooth .203  .080( .025 .010
"Abradable A* 6.5 +16.9 +15.4 12.2
Honeycarb -3.3 - 3.6 - 0.8 - 3.8
- JR S R
solid-gwoth _ .051 020
*Abradable A" + 3.0 + 2.5 + 3.3 ‘13
Honeycorh ' -20.6 -21.8 -20.1 -20.5
Solid-gmooth 279 .110] .025 .010
"Abradable A" +9.8 + 3.4 ‘4 + 4.0 v 2.2
Honeyconb ~16.8 - 49 - 3.5 0.0 + 6.9
S0lid-amooth .051 .020
“Abradable A" } +9.9 -1 - 3.2 - 3.8 - 49
Honeyoab ' | -24.7 -21.4 -20.9 -1 -24.2
Solid-Srooth .35 .140] .025 .010
"Abradable A" + 7.6 +10.0 +9.3 + 7.9
Honeyoarb + 8.5 +11.0 +14.8 +20.2
- —
Solid-amooth .051 .020 N
“Noradable A* ? - 0.6 - 1.9 - 2.9 - 2.4
Honeycorb \ -22.0 -23.8 -21.8 -18.8
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Aerodynamic Test Results for an Advanced Labyrinth Seal

An advanced labyrinth seal design, initially tested under contracts to
the Navy (N00140-73-C-0005 and N0O0140-74-C-0759), was selected as the
basis for the geometry optimization siudy of Task II (see Figure 4). An
experimental program was conducted to determine the influence of
individual seal design parameters. The matrix of these test results was
analyzed to derive an optimum seal geomatry with performance superior to
the original design. The performance of the optimum advanced seal was
mapped and then evaluated against a conventional stepped seal, which is
typical of many contemporary designs.

The conventional stepped seal which was used as a performance baseline
for the previous Navy program (Reference 1) and for this NASA study has
the following configuration:

KNIVES: Vertical
KN, number of knives 4
KP, pitch .699 cm (.275 in.)
KH, height .386 cm (.152 1in.)
Flow direction LTSD or STLD

LAND: Solid-Smooth
SH, step height .318 cm (.125 in.)
Step face smooth (no notch)

A sketch illustrating the general configuration of the advanced
labyrinth seal design selected is shown in Figure 59. The design
philosophy used to develop the advanced seal configuration was to
improve the sealing efficiency by increasing the turbulence within the
knife cavity. An extension of the high turbulence concept to seal
designs which optimize the knife-to-knife performance was investigated
by employing a mixture of seal geometry (nonconstant design parameters)
within an individual four knife advanced seal.

Optimization of an Advanced Labyrinth Seal Desi?_. The influences of
the geometric variables were sorted expeditiously and economically with
the DDA two-dimensional (2D) air seal test rig. The 2D rig test
program was structured in a flexible manner to provide only the
. necessary information to optimize the performance of the advanced
seal. When a geometric parameter under evaluation indicated marginal
performance improvement, the investigation was discontinued and
redirected. Therefore, the performance curves for several of the
geometric parameters presented in this report have a limited range of
data relative to other parameters investigated. In other cases,
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sufficient matrix information was obtained to define performance trends
over a wide range of data for several parameters. The effect of a
geometric parameter was evaluated empirically from its measured flow
parameter characteristic curve (w/Ty/PyA versus Py/Pp). The

value for the flow parameters, w/Ty/PyA, at an arbitrary 2.0

pressure ratio, when cross-plotted against the subject geometric
parameter, provided the influence information required for design
selection.

The specific values of the geometric parameters investigated in the 2D
rig to optimize the performance of the advanced seal are presented in
Table 18.* Each geometric parameter was evaluated at seal clearances
of .025 cm (.010 in.) and .051 cm (.020 in.) since the performance of
the advanced seal design was known to be dependent on the seal
clearance (Reference 1). Throughout the geometric parameter
investigations, a four knife seal configuration was used.

Step Height Effect on Advanced Seal Performance. A summary of the
test results for the influence of land step height i1s presented in
Figure 60. The investigation of this parameter over a pitch range of
.408 cm (.200 in.) to 1.016 cm (.400 in.), concentrated on the 700
knife angle with selected tests at a 900 knife angle. A1l tests of
step height effects were conducted with the land notched as shown in
Figure 59. As step height was varied, the height of the notch varied,
and the notch lip thickness was held constant at .064 cm (.025 in.).
Data were not obtained for the effect of land step height without the
notch in the land.

Both tha 700 and 900 knife angle configurations indicated only

slight variations in leakage rate at the two clearances investigated.
Over the step height range evaluated, the smaller step height gave the
lowest leakage. This result had not been anticipated since a
conventional stepped seal derives lower leakage from the spoiling
effect of the step on the flow streamlines. Although the effect on
leakage is small, the performance trend for step height is opposite to
that expected. The leakage performance trend with step height is
probably due to the complex interaction of the flow field with the step
height and land notch configuration.

Bisgd on these 909 and 700 knife angle performance trends, a .305

cm (.120 in.) step height was selected for investigation at the 500
knife angle. The performance of the .305 cm (.120 in.) step with the
500 knife angle, also shown on Figure 60, was almost identical to
that for the 700 knife angle. Since the influence of step height on
the performance of seals with 900 and 700 knife angles was similar,
additional testing of the step height parameter was considered
unnecessary.

*The geometric parameters are defined in Appendix H.

88

- -




The optimum step height for the advanced seal land was identified as
.305 cm (.120 in.).

Knife Height Effect on Advanced Seal Performance. The seal knife
height was varied by inserting wax strips to reduce the knife height
dimension. Figure 61 shows an example of this technique. The seal
knife height test results are presented in Figure 62 for the 900
knife angle seal and Figure 63 for the 700 and 500 knife angles.

The optimum knife height is near .508 cm (.200 in.) for the 900 knife
angle seal and is independent of clearance in the range evaluated, as
indicated in Figure 62. Knife pitch has a minor effect on the
selection of the optimum performance knife height. The 700 and 500
knife angle performance shown in Figure 63 generally indicates that a
large knife height, .711 cm (.280 in.), is beneficial. However, a
shallow knife height is desirable from manufacturing and operating
durability aspects.

Since the advanced seal performance is not highly sensitive to the
height parameter, a knife height of .381 cm (.150 in.) was selected to
compromise the mechanical and fabrication requirements with the
performance of the optimized advanced seal design.

Knife Pitch Effect on Advanced Seal Performance. The test results
for seal knife pitch are shown in Figures 64 through 66. The 900 and
700 knife angle data of Figure 64 indicate that a small pitch is
desirable for minimum leakage. However, the 500 knife angle data
show a different trend. A pitch of .762 cm (.300 in.) is the value for
minimum leakage with a knife angle of 500. Reducing the pitch below
.762 cm (.300 in.) significantly increases the leakage for a 500
knife angle seal, whereas the 900 and 700 knife angle seals
generally show little change. The maximum leakage variation for the
advanced seal through the range of knife pitch tested was approximately
12% for the 900, 709, and 500 knife angles. The advanced seal
configurations exhibited similar leakage sensitivity over the clearance
range evaluated.

Additional test results for the influence of seal knife pitch are
presented in Figures 65 and 66 for the 700 and 900 knife angle
configurations, respectively, where a range of seal step height data
were available. These results show that a change in the step height,
in general, does not change the optimum pitch value.

The selection of knife pitch must also receive careful consideration
from a mechanical design standpoint since it is the major geometric
dimension which affects the total allowable axial seal movement in a
stepped seal. For a typical stepped seal design, an axial travel
distance of +.254 cm (+.100 in.) is required to prevent the seal knives
from (1) disengaging from the lands or (2) rubbing the stationary land,
both of which will result in excessive leakage. Any physical contact
between the knives and the vertical faces of the land steps will cause
hardware damage and a possible catastrophic failuie.
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Based on the test results and mechanical design considerations, a pitch
of .762 cm (.300 in.) was selected for the optimized seal design. This
pitch yields the minimum leakage for 500 and 900 knife angle seal
configurations and is near the optimum for a 700 knife angle. The

.762 cm (.300 in.) pitch value also provides sufficient axial knife
movement for satisfactory operation in advanced engine environments.

The effect of pitch on the performance of the advanced seal design was
greater than expected since most designers do not consider pitch to be
a performance parameter. The scope of this program did not include an
evaluation of the effects of seal knife pitch on a conventional stepped
labyrinth seal (without a notched land step). It is evident from the
results of this program that the design of conventional stepped seals
might be improved if data for the effects of knife pitch on performance
were obtained.

Knife Angle Effects on Advanced Seal Performance. The test
results for the effect of seal knife angle are summarized in Figures
67, 68, and 69 in terms of percent leakage reduction compared to the
conventional 900 knife angle as the base. Figure 68 shows that, at
the optimum knife pitch, a 500 knife angle reduces leakage 7% at .025
cm (.010 in.) clearance and 12% at .051 c¢m (.020 in.) clearance. The
700 knife angle reduces leakage 5% and 9% for .025 cm (.010 in.) and
.051 cm (.020 in.) clearances, respectively.

Figures 70 and 71 are cross-plots of the data in Figures 67, 68, and 69
as a function of pitch for the 700 and 500 knife angles,

respectively. These results show that pitch and knife angle interact
to exert a significant influence on the seal performance. Generally, a
700 or 500 knife angle was found to reduce leakage. Only one

exception at .025 cm (.010 in.) clearance was found in the range of
advanced seal parameters investigated. The 500 knife angle at .508

cm (.200 in.) pitch increased leakage 2X. However, these data indicate
that the 500 knife angle is best for a knife pitch of .762 cm (.300
in.) or larger. Since a .762 cm (.300 in.) pitch was selected for the
optimized advanced seal design, the 500 knife angle was the optimm
choice.

Optimum Advanced Seal Performance. A sketch of the optimum advanced
seal design for the LTSD flow direction that was derived from
evaluating the geometric parameters is presented in Figure 72. The
optimized parameters are:

Step Height: .305 cm (.120 1n.)
Knife Height: .381 cm (.150 in.)
Knife Pitch: .762 cm (.300 1in.)
Knife Angle: 500
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The performance of the optimum advanced seal in the LTSD configurction
was mapped in the 2D test rig. The influence of the axial clearance
and the number of knives were determined. The performance
contributions from the step notch was investicated, also.

Design parameters related to some requirements of the seal application
were studied in the 3D test rig. The effects of flow direction and
land materials on the performance of the optirwum advanced seal were
investigated. The interaction of rotation with seal leakage was
measured at 80 m/s (261 ft/sec), 159 m/s (523 ft/sec), and 239 m/s (785
ft/sec) knife tip speeds.

Performance Mapping in the 2D Test Rig. The aierodynamic test results
from the 2D rig for the L15D optimizea advancad seal design are
presented in Figures 73 and 74 at .025 cm (.J10 in.) and .051 cm (.020
in.) clearances, respectively. The performarce of a 20 conventional
stepped seal with the same knife pitch, step height, DTC, and LTSD flow
direction has been included for comparison purposes. The optimized
advanced seal achieved a significant reductiin in seal leakage. At a
2.0 seal pressure ratio, leakage reductions >f 11% at .025 cm (.010
in.) clearance and 21% at .051 cm (.020 in.) clearance were obtained
relative to the 2D conventional stepped seal.

Land Notch Effect on Optimum Advanced feal Performance. An
evaluation of the seal land notch was condur.ted in the 2D rig for the
optimized advanced seal design. The seal 1.nd notch was modified from
the optimum geometry, Figure 75 (a), to a "“alf-notch” configuration,
shown in Figure 75 (b), to represent a typi:al machining process which
would be employed for economical manufacturing. The optimized seal was
also evaluated with a conventional or "no-n>tch" land, shown in Figure
75 (c). The aerodynamic test results for tie "full-notch",
“half-notch", and "no-notch" lands in the ojcimized seal are presented
in Figures 76 and 77. At a 2.0 pressure ratio, the performance with
the full-notch showed leakage reduced 7% relative to the no-notch
land. Similarly, the half-notch reduced leakage about 3%. Based on
these results, which are summarized in Tabl2 19, the full-notch land
was determined to be an important design feature of the advanced seal
configuration.

- Number of Knives Effect on Optimum Advanced Seal Performance. The
optimized advanced seal was also evaluated in the 2D rig for three and
two seal knives to complement the four knif2 information. The flow
parameter characteristics for the four, thrze, and two knife optimized
advanced seals at .025 cm (.010 in,) and .031 cm (.020 in.) clearances
are presented in Figures 78 and 79, respectively. These results show
that the overall discharge coefficient for the optimum advanced seal
design is lower at the .051 cm (.020 in.) clearance than at the .025 cm
(.010 in.) clearance. Table 20 summarizes the overali discharge
coefficients at a 2.0 seal pressure ratio for the four, three, and two
knife configurations. The discharge coefficients at .025 cm (.010 in.)
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clearance are about 20% greater than they are at .051 cm (.020 in.)
clearance.

Axial Clearance Effect on Optimum Advanced Seal Performance. The
sensitivity of the optimized advanced seal design relative to the axial
position of the seal knife on the land was also determined in the 2D
rig. The distance-to-contact (DTC) is defined as the minimum axial
distance of any part of the seal rotcr (knife) from contact with any
part of the land.

The nominal DTC for the optimized advanced seal was set at .254 cm
(.100 in.) to accommodate a typical design requirement on axial rotor
travel. The DTC results for the four, three, and two knife
configurations at .051 cm (.020 in.) clearance are summarized in Figure
80. The DTC has a nominal influence on the performance of the optimum
advanced seal.

The scope of this program did not include ottaining similar DTC data
for a conventional stepped seal. Since the DTC is probabiy an
important consideration in the design and performance of a conventional
stepped seal, this information should be generated in the near future
to aid the designer and the performance analyst.

Performance Mapping in the 3D Test Rig. The optimized advanced seal
design was ?aﬁrgcagea Tn the LTSD congiguration, shown in Figure 72,
and in the STLD configuration, shown in Figure 81, for testing in the
3D air seal test rig. An “Abradable A" land, a honeycomb land of .159
cm (.062 in.) cell size, and a solid-smooth land were tested in
combination with the STLD rotor. The LTSD rotor was tested with the
solid-smooth land. The abradable and honeycomb materials were
installed in each land as .254 cm (.100 in.) thick inserts. The
optimum advanced seal hardware tested in the 3D rig is shown in Figures
82 through 86.

The flow parameters measured in the 3D rig at static and dynamic test
conditions for the advanced seal with a solid-smooth land are presented
in Figures 87 and 88 for the LTSD and STLD flow directions,
respectively. The flow parameters for the abradable and honeycomb
advanced seals in the STLD flow direction are presented in Figures 89
and 90, respectively. All testing of the advanced seals in the 3D rig
was accomplished at .051 cm (.720 in.) radial clearance. These results
are summarized in Table 21.

The 3D rig test results show that the leakage through the LTSD advanced
seal with a solid-smooth land was very similar to, but slightly higher
than, that in the 2D rig. The 2D rig test results demonstrated a 21X
reduction in leakage with the optimized advanced seal Jesign compared
with the 20 conventional stepped seal at 2.0 pressure ratio. The 3D
rig tests show a 17X reduction in static leakage relative to the same
2D baseline seal.
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Rotational Effect on Optimum Advanced Sezl Performance. The
rotational effect of the seal knife on leakage in the LISD flow
direction is small, as shown in Figure 87. The optimized advanced seal
experienced only a 2% leakage reduction from static performance at a
2.0 pressure ratio for the maximum knife tip speed of 239 m/s (785
ft/sec). Negligible change from static performance was measured at 80
m/s (261 ft/sec? and 159 m/s (523 ft/sec) knife tip speeds. The effect
of rotation on the optimized advanced seal is similar to the effect of
rotation on a conventional LTSD stepped seal (Reference 1).

The rotational effect on the STLU advanced seal leakage .s greater than
that on the LTSD design, as shown in Figure 88. The maximum rotational
speed tested reduces the advanced seal leakage 6% compared to 3% fo: a
conventional STLD stepped seal (Reference 1). The advanced seal
leakage flow in the STLD direction shows a reduction, compared to a
conventional stepped seal at a 2.0 pressure ratio, of 24X statically
and 27% at 239 m/s (785 ft/sec) knife tip speed.

The STLD configuration of the advanced seal design has 9% less leakage
statically and 13X less leakage dynamically than the LTSD
configuration. A comparison, at a 2.0 pressure ratio, of the advanced
seal performance for leakage in the L7SD and STLD flow directions is
presented in Figure 91 for the 3D rig static and dyramic test
conditions.

The seal rotational effects for the porous material abradable land and
honeycomb land are included in Table 21. These data show that rotation
reduces leakage 7% for the abradable land at 239 m/s (785 ft/sec).
However, the honeycomb land experienced a 6% leakage increase at the
same conditions. An increase in honeycomb land leakage flow with seal
rotation was also found for a straight-through seal. Figure 92 is a
plot summarizing the effects of rotation on the optimized advanced seal
using a LTSD sclid-smooth land and on tne advanced seal using a STLD
solid-smnoth land, an abradable land, and a honeycomb land.

The performance for the abradable land and the honeycomb land is
compared to a solid-smooth land in Table 22 for the STLD configuration
of the advanced seal at a 2.0 pressure ratio. A plot of these results
in Figure 93 shows the performance penalty to be about 15% for the
abradahle land and above 50% for the honeycomb land. The abradable
land performance is insensitive to seal rotation, but the honeycomb
land performance deteriorates with increasing rotor speed. The leakage
increase with the “Abradable A" material land was expected and falls
within the range of the experimental results discussed earlier for
porous abradable material lands. However, the large increase in
honeycomb land leakage was unexpected. The tests conducted on
conventional straight-through seals in the 20 and 3D seal rigs showed
that honeycomb lands reduced leakage, particularly at .051 cm (.020
in.) clearance.
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Conventional stepped seal performance with honeycomb lands was not
obtained during the course of this program nor was any performance
information found in the literature. The unusual response of the
advanced seal with a honeycomb land will require more experimental
evaluation to provide the nec2ssary information to explain the leakage
performance characteristic. In addition, conventional stepped seal
performance with honeycomb lands should be generated to provide the
engineer with sufficient knowledge to select the best labyrinth seal
design for the dynamic environment.
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FIGURE 63. EFFECT OF KNIFE HEIGHT ON FOUR SLANTED KNIVES ADVANCED SEAL
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FIGURE 66. EFFECT OF KNIFE PITCH ON FOUR KNIFE STEPPED
SEAL WITHA 90° KNIFE ANGLE
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FIGURE 67.  EFFECT OF KNIFE ANGLE ON FOUR KNIFE ADVANCED
SEAL WITH A KNIFE PITCH = 1.016 cm (.400 in, )
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FIGURE 68, EFFECT OF KNIFE ANGLE ON FOUR KNIFE ADVANCED
SEAL WITHA KNIFE PITCH = ,762 ¢cm (,300 in. )
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FIGURE 69. EFFECT OF KNIFE ANGLE ON FOUR KNIFE ADVANCED
SEAL WITHA KNIFE PITCH = .508 cm (200 in.)
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FIGURE 70, EFFECT OF PITCH ON KNIFE ANGLE INFLUENCE FACTOR FOR A
FOUR KNIFE ADVANCED SEAL WITH A KNIFE ANGLE = 70°
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49/ 4, KNIFE ANGLE INFLUENCE FACTOR - %

FIGURE 71, EFFECT OF PITCH ON KNIFE ANGLE INFLUENCE FACTOR FOR A
FOUR KNIFE ADVANCED SEAL WITH A KNIFE ANGLE - 50°
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FIGURE 72, LTSD OPTIMIZED ADVANCED “F/! CONFIGURATION
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FIGURE 80. EFFECT OF DISTANCE-TO-CONTACT(DTC) AND NUMBER
OF KNIVES ON LEAKAGE THROUGH THE OPTIMUM
ADVANCED SEAL AT A CLEARANCE = .051cm(.020 in.!
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FIGURE 81, STLD OPTIMIZED AOVANZED SEAL CONFIGURATION
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TABLE 18. SPECIFIC VALUES OF GEOMETRIC PARAMETERS INVESTIGATED IN
THE 2D SEAL RIG TO OPTIMIZE ADVANCED SEAL PERFORMANCE

Land Step Height: .305 em (.120 in.)
457 em (.180 in.)
.610 cm (.240 in.)

Seal Knife Height: .203 cm (.080 in.)
.381 em (.150 in.)
«711 cm (.280 iu.)

Seal Knife Pitch: .503 cm (.200 in.)
.762 cm (.300 in.)
1.016 cm (.400 in.)

Seal Knife Angle: 90°
70°
50°
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TABLE 19.

EFFECT OF LAND NOTCH ON ADVANCED SEAL

PERFORMANCE AT A PRESSURE RATIO OF 2.0

Ad/d
¢, From tlie Baseline
Land Configuration CL, Clearance Flow Parameteg No Notch Land
cm in. Kg * Kls 1b Rl %
Nes 1bf sec
Full-Notch .025 .010 .0160 .211 -7.58
Half-Notch .025 .010 .0165 217 -2.84
No-Notch .025 .010 .0173 .22y Baseline
Full-Notch .051 .020 .0135 .177 ~7.34
Half-Notch .051 .020 .0140 .184 -3.95
No-Notch .051 .020 L0144 .190 Baseline
TABLE 20. SUMMARY OF ADVANCED DESIGN LABYRINTH SEAL

DISCHARGE COEFFICIENTS AT A PRESSURE RATIO OF 2.0

KN, CL, Cd,
2D Rig No. of Clearance Discharge
Seal Configuration Knives cm in. Coefficient*
Standard Stepped Seal 4 .025 (.010) 2442
Advanced Design 4 025 (.010) .401
Advanced Design 3 .025  (.010) .498
Advanced Design 2 .025 (.010) .619
Standard Stepped Seal 4 .051  (.020) 417
Advanced Design 4 051 (.020) .331
Advanced Design 3 .051 (.020) 414
Advanced Design 2 .051 (.020) .506
* ¢
Cd - )
isentropic
where ¢, Flow Parameter
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TABLE 21. SUMMARY OF ROTATIONAL EFFECTS ON ADVANCED SEAL PERFORMANCE
l Distance | ¢-Airflow Parameter L %
' To kgV¥/s « % 2 —_
Contact | ({1bn{W/sec psia in, [} e ]
" Flow 80. m/s 159. m/s 239. m/s
Land Direction | cm (in.)| 2D Rig 3D Rig | (26). ft/sec) ! (523. ft/sec) | (785. ft/nec)
T —
Smooth LTSD .259 .0134 .0140 0.0 0.0 -2.2
(.102) (.176) (.184)
Smooth STLD .368 .0128 ~3.0 -4.1 -5.9
(.145) i (.169)
Abradable STLD .386 .0149 -4.1 ! -4.6 -6.6
' (.152) (.196)
Honeycomb ;  STLD .379 .0192 +3.2 +5.6 +6.4
(.149) (.252)
/Ty
0. - Static Adirflow Pnrnmotor,;urh
¢ - Airflow Parameter, g§2¥ » for Subject Land
Pressure Ratio = 2,0
Radial Clearance = ,051 cm (.020 in.)
LTSD - Large-to-Small Diameter
STLD - Small-to-Large Diameter
TABLE 22. PERFORMANCE COMPARISON OF ABRADABLE AND HONEYCOMB LANDS
WITH A SOLID-SMOOTH LAND FOP THE ADVANCED SEAL DESIGN
Distance M/ T IR
To ss
Contact —- e - -
Flow 0.0 m/s 80. m/s 159. m/s 239. m/8
Land Direction r_m_m 261, ft/sec 5§23, ft/sec 705, fte/sec
— 20
$mooth STLD . 368 Baseline Baseline Baseline Baseline
(.14%)
Abradable STLD .386 +16.0 +14.6 +15.4 +15.1
{.152)
Honeycomb STLD . 379 +49.1 +60.5 +64.2 +68.2
(.149)

¢__ - Solid-Smooth Land Airxflow Parameter (w/Ty/py A)

¢ - Airflow Parameter (w/Ty/py A) for Subject Land

Pressure Ratio

Radial Clearance = ,051 cm (.020 in.)
STLD - Small-to-lLarge Diameter
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Non-constant Geometric Parameters Evaluation for Advanced Seal Design.
As a further endeavor to reduce seal Teakage, the effect of varying
selected major geometric parameters from knife-to-knife in a
non-constant fashion through the LTSD advanced seal was experimentally
investigated on the 2D rig. Previous analytical analysis by DDA had
shown that lower knife discharge coefficients for a series of
restrictions could be effected by controlling the individual knife
pressure ratio to influence the level of internal cavity turbulence.
The major geometric variables controlling leakage were determined to be
knife pitch, step height, and knife angle at a design specified
clearance and DTC.

Two separate stepped seal envelope lengths were investigated to
evaluate the merits of non-constant geometry for a four knife advanced
seal. Total seal envelooe lengths evaluated were 3.05 cm (1.20 in.),
based on an equivalent or average individual knife pitch of .762 cm
(.300 in.), and 4.06 cm (1.60 in.), based on an equivalent individual
knife pitch of 1.016 cm (.400 in.). Figure 94 shows a typical example
of non-constant pitch (increasing pitch dimensions along the seal
length) applied to a four knife, 700 angle, advanced seal. Table 23
summarizes the configurations tested and compares the performance at a
pressure ratio of 2.0 for each configuration to its constant geometry
counterpart and to the optimized advanced seal. For particular

. non-constant geometries, the constant geometry counterpart is the
optimized advanced seal. Also given are the respective geometric
dimensions along the seal flowpath, noted by number (#1, #2, etc.), the
locations of which are illustrated on Figure 94.

In general, the non-constant geometry configurations demonstrated
improved performance at .025 c¢cm (.010 in.) clearance with a maximum
reduction in flow of 6% compared to the optimized advanced seal.
However, at .051 cm (.020 in.) clearance, a 2% to 14% increase in
leakage was found.

The best non-constant geometry utilized a 500 knife angle with the
knife pitch decreasing along the flowpath at a rate for an equivalent
pitch = 1,016 cm (.400 in.). This configuration indicated an 8%
reduction in leakage at a clearance of .025 cm (.010 in.) but had a 2%
increase at .051 cm (.020 in.) clearance when compared with its
constant geometry counterpart at a pressure ratio of 2.0.

A non-constant configuration with increasing pitch and step height was
evaluated with the 500 angle knives. This configuration indicated an
8% increase in leakage at a 2.0 seal pressure ratio compared to its
constant geometry counterpart at .025 cm (.010 in.) clearance.
Therefore, the investigation was not pursued with this cembination of
non-constant geometry.
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The non-constant geometry advanced seal configured with 700 angle
knives set at increasing pitch demonstrated the greatest improvement in
leakage comp.red to its constant geometry counterpart, pitch = 1.016 cm
(.400 in.). An 11% reduction in leakage at a clearance of .025 cm
(.010 in.) and a 6% reduction at .051 cm (.020 in.) was evident at a
2.0 pressure ratio. Compared to the optimized advanced seal, however,
it was marginally higher in leakage at .025 cm (.010 in.) clearance and
5% higher at .051 cm (.020 in.).

Two configurations with vertical knives (K® = 900) at non-constant
pitch showed leakage reductions at both clearances compared to their
constant geometry counterparts. The better configuration, equivalent
pitch = 1.016 cm (.400 in.), indicated a 7% reduction in leakage
compared to the constant geometry advanced seal.

Knives of 900, 700, and 500 angles were assembled with a

non-constant pitch (knife spacing) for evaluation at an equivalent
pitch = 1.016 cm (.400 in.). At a seal pressure ratio = 2.0, this
configuration indicated a 6% reduction in flow at .025 cm (.010 in.)
clearance compared tu the base constant geometry configuration and 3%
reduction compared to the optimized advanced seal. At .051 cm (.020
in.% clearance, however, its leakage was 5X higher than the optimized
seal,

The non-constant pitch seals have less allowable axial seal travel than
their equivalent constant geometry configurations. Varying the stack
between the seal knives and adjacent steps within the same seal length
limits the axial travel to the minimum distance-to-contact (DTC). The
axial seal clearance (DTC) has been noted in Table 23 for both constant
and non-constant geometry configurations for this reason.

In summary, the mixed knife angle and/or the non-constant pitch seal
geometries tested indicated improved performance (lower leakage) at
.025 cm (.010 in.) clearance compared to their constant geometry
counterparts. However, combining increasing step height with
increasing pitch resulted in a performance loss. At .051 cm (.020 in.)
clearance, leakage decreased for the 700 and 900 knife angle

conf igurations, while leakage increased for the others. Also, none of
the non-constant geoaietry configurations showed improvements at both
clearances compared to the optimized advanced geometry seal.
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Rotational Power Absorption

The relative seal rotational power requirements were measured for all
3D rig seal configurations as a principal part of the 3D dynamic rig
investigative effort. The objective of this eft.. 't was to determine if
the differences in the power requirements of various seal rostors
interacting with the land geometry (i.e., smooth, abradable, and
honeycomb) could, when applied to enoine operating environments, yie!d
seal power requirement vaiiations significant enough to incorporate in
engine cycle performance accountability. The experimerial tochnique
utilized to determine the rotational power of the 3D :-»al configuration
is explained in detail in Test Rigs and Procedures.’

The rotational power absorption data acqu‘red f- a' .est
configurations was initially evaluated graphicai‘ 1in terms of actual
measured power versus seal pressure ratio with actual seal rotor speed
as a parameter. As an example, Figure 95 illustrates the actual seal
rotor power absorption for the four knife straight-through seal at .05l
cm (.010 in.) clearance and .356 cm (.140 in.) knife pitch with smooth,
"Abradable A", and honeycomb lands. As noted, the actual power levels
are in the order of 3.7 kw (5.0 hp) at high seal pressure ratios and
rotational speeds. This power level consists of the total turbine-seal
rotor drive system losses (windage, friction, etc.). The differences
in actual power absorbed by each of the three land surfaces at a given
pressure ratio and speed does, however, represent the differences in
para-itic power absorption due to the knife-land surface interactions
alone. A more useful representation of the power absorption data for
engine application purposes is illustrated on Figure E-5, Appendix E,
where corrected (or referred) power (P/6v/6 ) is utilized to evaluate
the performance for the seal configuration. This provides a direct
relation of seal power absorption to environmental conditions within
the engine (i.e., seal inlet temperature, inlet pressure, and pressure
ratio). A computatiorz method is presented in Appendix E for applying
the rotational power absorption diia to an engine environment for the
evaluation of seal designs. The corrected power absorption data for
the straight-through seals with smooth, abradable, and honeycomb lands
are plotted in Figures E-1 through E-6. Corresponding data for the
advanced seal are presented in Figure E-7.

The vertical dotted lines on Figure 95 and Figures E-1 throu;h E-7
encompass the seal pressure ratio ronge in which the rotor bearing load
was maintained at a constant 670 N (150 1bg). On either sid: of this
range it was not possible to maintain « constant bearing .0ad due to
the rig chrust balance system oesign and the available line pressure.

*Tee "3D Rig Power Absorption Analysis*, Test Rigs and Proccduics
section.
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The rotational power absorption resuits for the four knife straight
seal configurations are summnarized and compared in Table 24 for the
,203 cm (.080 in.), .279 cm (.110 in.), and .356 cm (.140 in.) pitch
seal rotors using the smooth, abradable, and honeycomb lands. The
rotational power absorption differences due to land material are small,
typically of the order 5% at .025 cm (.010 in.) radial clearance, 2.0
seal pressure ratio, and 239 m/s (785 ft/sec) knife tip speed.

Table 25 summarizes and compares the effect of pitch on the rotational
power absorption for each land confiquration tested. This comparison
sh-ws that seal pitch has a small effect on rotational power
requirenents. The total variation due to pitch was 8.5% for the .051
cm (.020 in.) clearance honeycomb lands, with the lowest pitch rotor
indicating the lowest power. The compined aerodynamic leakage and
power absorption test results for the four knife straight seal indicate
that leakage can be reduced with the honeycomb land, but the rotational
power absorption is slightly higher.

Table 26 has been provided to show the change in net system performance
in terms of specific fuel consumption (SFC). The use of a honeycomb
land instead of a smooth land with a conventional four knife
straight-through seal at .025 cm (.010 in.) and .051 cm (.020 in.)
radial clearances would provide a net system performance improvement
which results in a lower SFC.

The rotational power absorption was also measured during the advanced
seal configuration tests in both the STLD and the LTSD flow directions
at .051 cm (.020 in.) clearance. These results, illustrated in Figure
E-7, show that the rotational power absorption for the advanced seal is
generally the same in the STLD flow direction and in the LTSD flow
direction. Comparison of Figure E-7 with Figure E-5 indicates that the
advanced seals and the straight-through seals experience similar levels
of rotational power absorption.

Table 27 summarizes the advanced seal rotational power absorption
differences for the smooth, cbradable, and honeycomb lands. The
honeycomb land seal configuration indicated the highest power
absorption of the land configurations tested (14% above tne smooth
land). This is believed to be partially due to the high leakage rates
evidenced for this configuration.

Throughout the range of seal design and environments tested, the
rotational power absorption maintained a consistent trend and level
with speed. From these results it may be concluded that the rotational
power ahsorption of a labyrinth seal is not a significant design
consideration.

138



P, ACTUAL SEAL ROTOR POWER - kw (hp)
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TABLE 24.

SUMMARY OF ROTATIONAL POWER ARSORPTION FOR SMOOTH,
ABRADABLE, AND HONEYCOMB LANDS WITH FOUR KNIFE
STRAIGHT~THROT'GH SEAI, ROTORS

AP/P,
p/&VG, Power
Corrected Change
CL, Kp, v, Rotational | From
Clear.| Pitch |Velocity| Seal Power Smooth
Land cm cm m/8 Pressure kw Land
Type (in.) (in,) | (ft/sec) | Ratio (hp) L)
Smooth .025 .203 239 2. 1.150 Basel .ne
(.010) | (.080)| (785) (1.542)
"Abradable A" .025 1.139 0.92
(.010) (1.528)
Honeycomb .025 1,195 +3.89
(.010) (1.602)
Smooth .051 1.233 Baseline
(.020) {1.654)
"Abradable A" .051 1.212 -1.75
(.020) (1.625)
Honeycomb .051 1.195 -3.14
(.020) | (1.602)
Smooth .025 .279 1.148 Baseline
(.010) | (.110) {(1.540)
"Abradable A" .025 1.180 +2.,79
(.020) (1.583)
Honeycomb .025 1.213 +5.65
(.010) (1.627)
Smooth .051 1.212 Baseline
(.020) (1.625)
"Abradable A" .051 1.226 +1.17
(.,020) (1.644)
Honeycomb .051 1.255 +3.57
(.020) (1.683)
Smcoth .025 .356 1.184 Bageline
(.010) | (.140) (1.588)
"Abradable A" .025 1.207 +1.89
(.010) (1.618)
Honeycomb .025 1.239 +4.60
(.010) (1.661)
Smooth .051 1.277 Baseline
(.020) (1.712)
"Abradable A" .051 1.265 -0.88
(.020) (1.697)
Honeycomb .051 1.301 +1.93
(.020) (1.745)
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TABLE 25.

COMPARISON OF ROTATTONAL

POWER ABSORPTION AS A

FUNCTION OF CLEARANCE, PITCH, AND LAND SURFACE IN A
FOUR KNIFE STRAIGHT--THROUGH SEAL
, AD/P,
P/&v, Power
Corrected Change
CcL, KP, v, Rotational| From
Clear, |Pitch |Velocity | Seal Power Baseline
Land cm cm m/8 Pressure kw Pitch
Type {in.) (in.) [(ft/sec) | Ratio (hp) )
Smeooth .025 .203 239 2.0 1.150 +0.13
(.010){(.080) | (785) (1.542)
.025 .279 1.148 Baseline
(.010) | (.110) (1.540)
.025 . 350 1.184 +3.12
(.010) {(.140) (1.588)
Smooth .051 .203 1.233 +1.78
(.020) | (.080) (1.654)
.051 .279 1.212 Baseline
(.020) {(.110) (1.625)
.051 .356 1.277 +5.35
(.020) 1(.140) 1. 1.712)
"abradable A" .025 .203 1.139 -3.47
(.010) | (.080) (1.528)
.025 .279 1.180 Baseline
(.010) | (.110) (1.583)
.025 .356 1.207 +2,21
(.010) [ (.140) (1.618)
"Abradable A" .051 | .203 1.212 -1.16
(.020) 1(.080) (1.625)
.051 .279 1,226 Baseline
(.020) (.110) (1.644)
.051 .356 1.265 +3.22
(.020) | (.140) L (1.697)
Honeycomb .025 .203 1.195 -1.54
(.010) {(.080) (1.602;
.025 .279 1.213 Baseline
(.010) [(.110) (1.627)
.025 . 356 1.239 +2.09
(.010) [(.140) (1.661)
Honeycomb .051 .203 1.195 -4.81
(.020) {(.080) (1.602)
.051 279 1,255 Bameline
(.020) |(.110) (1.683)
,051 .356 1.301 +3.68
(.020) {(.140) (1.745)
NOTE: The .279 cm (.110 in.) pitch is used for the baseline in

each case.




TABLE 26. SUMMARY OF PERFORMANCE IMPROVEMENT FROM USING A HONEYCOMB LAND INSTEAD OF A SMOOTH
LAND IN A FOUR KNIFE STRAIGHT SEAL FOR AN ADVANCED HIGH BYPASS RATIO TURBOFAN ENGINE

T
ASFC/SFC,
Change In Specific Fucl Consumption
Kp, CL, v, From a Solid-Smooth Land - $%
Pitch | Clear., |Velocity | Seal Seal et
Land cm cm m/8s Presgsure | Seal Power Change
Type {in.) \in.) {(ft /sec) | Ratio Leakage. Absorption Per Seal
Honeycomb .203 .051 239 2.0
(.080) (.020) | (785) -.790 -.013 ~.803
Honaycomb .279 .051 -.850 +.015 -.835
(.110) (.020)
Honaycomb . 356 .051 ~.630 +.008 ~.622
(.140) (.020)
1
Engine Cycle Description: Altitude = 106884 (35,000 ft.)
Mach Number = ,B80
Bypass Ratio = 7.0:1
Fan Pressure Ratic s . 7:1
Overall Presgsure Ratio = 38:1
Burner Outlet Temperature = 1700K (3060°R)
5 RADABLE
BLE 27. SUMMARY OF ROTATIONAL POWER ABSORPTION FOR A SMOOTH, AB B
™ AND HONEYCOMB LAND USING A FOUR KNIFE ADVANCED LABYRINTH SEAL
r P/8V0 AP/D !
CL, Corrected Change I
Radial v, ! Rotational From
Clearance Velocity Seal ! Power Smooth !
Land cm n/s Pressure kw Land
Type (in.) (£t /sec ) Ratio (hp) ) i
| smooth .051 239, 2,0 | 1.23 Baseline
{.020) (785.) ! (1.648)
" 1.30 +5.6
Abradable A" (1.74)
1.40 +13.7
| Honeycomb [ (1.874) l
N - - PO SRS, S
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CONCLUSIONS

This program experimentally explored labyrinth seal design and
performance parameters for which technical information was non-existent
or limited in scope. The primary goals of this program were (1) to
determine the influence of selected geometric and aerodynamic parameters
on the performance of labyrinth seals, and (2) to impruve and develop an
advanced labyrinth seal design that significantly reduces leakage. The
foliowing summary of conclusions derived from the results obtained in
this program shows that the program goals were achieved in all
categories.

o

Honeycomb lands were found tc reduce leakage up to 24% for
straight-through labyrinth seals.

Honeycomb cell depth was found to be a significant parameter
influencing the leakage of straight-through seals.

Some abradable lands were found to leak substantially more than a
solid-smooth land.

Grooving a porous abradable seal land signific tly reduced
leakage through the material.

Moderate surface roughness was found to reduce the leakage of
straight-through seals by approximately 23% over a smooth land at
.013 cm (.005 in.) clearance and 5% at .051 cm (.020 in.)
clearance. Greater roughness increased leakage.

Rotation reduced leakage up to 10% for smooth and abrarable lands
in straight-through seals, but it had negligible effect with the
honeycomb 1land.

Rotation effects do not influence the selection of optimum knife
pitch for straight-through seals.

An advanced seal design using a solid-smooth land was developed
that reduced leakage 26.9% compared to a conventional stepped seal.

Using a honeycomb land with the advanced seal increased leakage
69% compared to the solid-smooth land.

Rotation effects on the optimized advanced seal for leakage in the
large-to-small diameter flow direction were negligible.

Rotation decreased the advanced seal leakage approximately 6% for

flow in the small-to-large diameter direction for the solid-smooth
and abradable lands. However, the honeycomb land experienced a 6%
leakage increase with rotation compared to the static performance.
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o The rotational power absorption for solid-smooth, abradable, and
honeycomb lands in a conventional four knife straight-through seal
showed small differences. The honeycomb Tand had the maximum
effect indicating a 6% higher power absorption than the smooth
land.

o The rotational power absorption for the advanced seal is
approximately the same as that for the four knife straight-through
seal when both have solid-smooth lands.

o The rotational power absorption for the advanced seal design using
a honeycomb land is 13% higher than it is with the solid-smooth
land.

The results obtained during the course of this program stimulated
additional questions suggesting the need for further work. Based on the
results of this program, the following areas of investigation should be
included in future labyrinth seal performance evaluation programs:

Conventional Straight-Through Seals

o Effect of grooving solid material lands
o Effect of surface roughness on leakage in a rotational environment

Conventional Stepped Seals

0 Effect of step height and knife height
o Effect of pitch
o Effect of axial position on land

o Effect of honeycomb lands

o
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APPENDIX A

Four Knife Straight-Through Labyrinth
Seal Flow Parameter Curves from the 2D
Air Seal Test Rig for Smooth, Abradable,
and Honeycomb Lands

A-1

At i .



The labyrinth seal flow parameter curves contained in Appendix A
were derived from testing accomplished in the Detroit Diesel Allison
two-dimensional (2D) air seal test rig.

The static test data from the 2D rig include performance for a solid-
smooth land, four abradable lands, and three honeycomb cell size lands
using a conventional four knife straight-through seal. Nickel-graphite

and aluminum-polyester materials were utilized to represent solid abrad-
ables, and "Abradable A" and "Abradable B'" materials were utilized to
represent porous abradables. The cell sizes for the honeycomb lands

were .1979 cm (.031 in.), .159 cm (.062 in.), and .318 cm (.125 in.).

The cell depth was .381 cm (.150 in.). Each land was tested at three
clearances: .013 cm (.005 in.), .025 cm (.010 in.), and .051 ecm (.020 in.).
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APPENDIX B

Four Knife Straight-Through Labyrinth Seal Flow
Parameter Curves from the 3D Air Seal Test Rig
for Smooth, Abradable, and Honeycomb Lands



The labyrinth seal flow parameter curves contained in Appendix B
were derived from testing accomplished in the Detroit Diesel Allison
15.2 em (6.00 in.) diameter dynamic air seal test rig (3D rig).

The data include 3D rig static and dynamic test results for solid-
smooth, abradable, and honeycomb lands using a conventional four knife
straight-through seal design. The ''Abradable A" land material repre-
sented the porous lands. The honeycomb land celil size was .159 cm
(.062 in.), and the cell depth was .254 cm (.10( in.).

Each land was tested with seal knife pitch values of .203 ¢m (.080 in.),
.279 ¢cm (.110 in.), and .356 c¢m (.140 in.). All configurations were
tested at .025 ¢m (.010 in.) and .051 cm (.020 in.) radial clearances.

In addition tv the static test, dynamic test: Jere run at constant
rotational speeds equivalent to knife tip velocities of 80 m/s
(261 ft/sec), 159 m/s (523 ft/sec), and 239 m/s (785 ft/sec).
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APPENDIX C

2D and 3D Rig Test Results of a

Four Knife Straight Seal with

Knife Rub Grooves on an '"Abradable A"
Land



The plots contained in Appendix C illustrate the seal leakage
e fects due to knife rub grooves in an abradable land. These
tests were conducted in the Detroit Diesel Allison 2D and 3D
air seal test rigs. The test configuration was a four knife
straight~through labyrinth seal with the following geometry:

Knife Pitch = ,279 em (.210 in.)
Knife Height = .279 em (.110 in.)
Knife Angle = 90° (Vertical)
Knife Tip Thickness = ,025 cm (.C10 1in.)
Land Material - '"Abradable A"

Groove Profile Dimensions

.060 cm

(0.024 in.) .025 cm
(0.010 in.)
.051 cm

(0.020 in.)

NOTE: All knife clearances are based on the distance from the
knife tip to the non-grooved land surface.

The following operating parameters were investigated:

2D Rig: At knife clearances = ,013 cm (.005 in.), .025 c¢m (.010 in.),
and .051 cm (.020 in.), the following knife-groove axial
positions were tested:

Knives directly above the grooves.

Knives .013 em (.005 in.) forward of the grooves.
Knives .025 cm (.010 in.) forward of the grooves.
Knives .013 cm (.005 in.) aft of the grooves.

. Knives .025 em (.010 in.) aft of the grooves.
Knives halfway between the grooves.

[ R B W N



3D Rig:

At a knife radial clearance = .025 cm (.010 in.), the
following knife-groove axial positions were tested with
102° and 360° peripheral land grooves:

1. Knives directly above the grooves.
2. Knives .025 cm (.010 in.) forward of the grooves.
3. Knives .25 cm (.010 in.) aft of the grooves.

Knife tip speeds at each condition were:

0 (static).

80 m/s (261 ft/sec).
159 m/s (523 ft/sec).
239 m/s (785 ft/sec).

< < <9 <
n
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APPENDIX D

Test Data Correlation for the 2D and 3D
Seal Rigs.
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The agreement between test results from the 2D rig and the 3D rig

was generally good. Figures D-1 through D-4 show the rig correlation
obtained for four knife straight seals with a solid-smooth land and a
representative honeycomb land at .025 cm (.010 in.) and .051 cm (.020
in.) clearances. The correlation data for these straight seals are
summar .zed in Table D-1. The honeycomb land displays an unusual
sensitivity to clearance and may be sensitive to the relation between
the knife tip and honeycomb cell edge orientation.

Figure D-5 illustrates the 2D rig to 3D rig correlation for the
advanced seal, which was developed on the 2D rig. 1:is comparison
shows good agreement at pressure ratios less than about 1.3 and only
a slight further deterioration beyond about a pressure ratio of 2.0
to 6.5% variation at a pressure ratio of 3. The correlation data for
the advanced seal geometry in 2D rig and 3D rig tests are summarized
in Table D-1, also.
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APPENDIX E

Power Absorption Curves from 3D Air Seal Rig Tests
on Four Knife Straight-Through Seals and an Optimized
Advanced Seal Including an Application Procedure.
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The labyrinth seal power absorption curves contained in Appendix
E were derived from testing accomplished in the Detroit Diesel
Allison 15.24 cm (6.00 in.) diameter, dynamic air seal test rig
(3D rig).

Rotational power absorption was measured for:

1. TFour knife straight-through seal configurations with
rotor pitch values of .203 cm (.080 in.), .279 cm
(.110 in.), and .356 ca (.140 in.) tested with solid-
smooth, abradable, and honeycomb lands. The "Abradable
A" porous material was used in the abradable land. The
honeycomb land cell size was .159 cm (.062 in.), and the
cell depth was .254 ecm (.100 in.).

All configurations were tested at .025 cm (.010 in.) and
.051 cm (.020 in.) radial clearances.

2. An optimized advanced seal configuration was tested with
solid-smooth, abradable, and honeycomb lands at 1 radial
clearance of .051 cm (.020 in.). The materials used in
the stepped land were the same three which were used in
the straight-through seal configurations.

Rotor Geometry: 4 Slanted Knives
Knife Angle = 50°
Pitch = .762 cm (.300 in.)
Step Height = .305 cm (.120 in.)

Knife Height = .381 c¢m (.150 in.)



Calculation Procedure for
Applying Rotational Seal Power
Absorption Data to Engine Environmental Conditions

Sample Problem

Calculate the relative rotational power absorption
diiference between two potential land surfaces for
a typical seal application in a high bypass ratio
turbofan engine with an overall compressor pressure

ratio, RCOA = 38.
Design Assumptions
Seal Location: First Stage, High Pressure Turbine
Wheel, Inlet Face.
Seal Type: Optimized Advanced Seal.

Potential Land Surfaces:
o Solid-Smoorth ‘and

o "Abradable A" Land

Seai Geometry: Flow Direction = STLD

g = 61.5 cm (24.2 1in.)
Clearance, CL = .051 cm (.020 in.)
Number of Knives, KN = 4

Pitch, KP = ,762 cm (. ‘00 in.)

Knife Angle, K6 = 50°

Knife Height, KH = ,381 cm (.150 in.)
Step Height, SH = ,305 cm (.120 in.)

Seal Diameter, D

Seal Operating Environment:
Seal Inlet Temperature TU = 940 K (1692°R)
Seal Inlet Pressure, Py ™ 3723 kPa (540 psia)
Seal Pressurc Ratio, pU/pD = 1.7
Seal Rotational Speed, RPM = 9000 rpm

L5 A



E-4

Procedure

Calculate the 3eal dynamic operating conditions.

Seal Knife Tip Velocity,

Ll D, * RPM
~000

= 290. m (950. _f_t_)
sec

/1]

Seal Knife Tip Correctad Velocity,

= 161. m [526. ft
S

From Figure E-7 for the STLD optimized advanced seal with a clearance

of .051 cm (.020 in.) at py/pp = 1.7 on the abcissa and parametric curves

for a corrected knife tip speed of V/v/8 = 159 m [523 ft ) , read the seal rig
rotor corrected power cn the ordinate: 8 sec

()

§/8

Land Material . D
"Abradable A" .373 kw (.500 hp)
Selid-Smooth .343 kw (.480 hp)

*The diameter ratio scales the corrected power parameter to generallze
the performance between the engine seal, Dg, and the reference 3D rig
seal, D . ,. The reterence seal diameter for the 3D test rig is Dgpq =

15.24 cm (6,00 in.).



Therefore, the additional corrected power absorbed by an "Abradable A"
land relative to a solid-smooth land is

_€¥L. Dstd| = .030 k h
576 (Ds ) .030 kw (.040 hp)

The additional actual power absorbed by an "Abradable A" land in
the engine seal relative to a solid-smooth land is

AP =1AP [Dgeq Dg
Belid] i)
S Dgtd

=[.030 3723. 940. = 8.0 kw (10.7 hp)
101.3 Y/ 288.16 15 24

Therefore, the application of "Abradable A" material to the first
stage, high pressure turbine wheel front seal will absorb 8.0 kw
(10.7 hp) more than a solid-smooth land at the design conditions,

-~

It should be noted that to determine the net system performance,
the effect of leakage change must also be included.

.
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P/84/8, CORRECTED SEAL ROTOR POWER - kw (hp)

E-

(1.8) —

(1.6)

(1.4)

(1.2) —

(1.0) -

(0.8) —

(0.¢) —

(0.4)

(0.2) —

o

FIGURE E-1,

CORRECTED SEAL ROTOR POWER VERSUS SEAL PRESSURE
RATIO FOR A FOUR KNIFE STRAIGHT SEAL

CL, CLEARANCE = ,025 em (.010 in.)

KP, KNIFE PITCH = ,203 cm (.080 in.)

: V/A/T, CORRECTED KNIFE TIP SPEED
§ : 239 m/s (785 fi/sec)
1.2-4-_0: :
& 2F o
°f : Po
o:
o+ i
0.8 : 2 Jo soLib-SMOOTH
: : 0 .159 cm (.062in.) CELL
: : HONEYCOMB
: : O "ABRADABLE A"
0.64 i i
0.44 i i ©ODO
3 S & g 159 m/s (523 ft/sec)
: D
e8:w
0.24— : O
g @@ O o) % Oo
oOg @ 9 80 m/s (26 ft/sec)
o = DL \ 4 1 § T T
1.0 2.0 3.0 4.0

Py/Pp+ SEAL PRESSURE RATIO

..\.,



P/8J6, CORRECTED SEAL ROTOR POWER - kw (hp}

FIGURE E-2. CORRECTED SEAL ROTOR POWER VERSUS SEAL PRESSURE
RATIO FOR A FOUR KNIFE STRAIGHT SEAL

CL, CLEARANCE = .05 em (.020 in.)

KP, KNIFE PITCH = .203 cm {.080 in.)

1.4 Be) g §
(1.8) — § g
: 1 0
S?O 3 0© >° o v/[0 , CORRECTED KNIFE TIP SPEED
(1.6} |- 1-21"'0@ g ;O %) 239 m/s (785 ft/sec)
o i o
(1.9 E é
Lo i Pl =w
: E L]
H : O SOLID-SMOOTH
(1.2) p~ : H D 159 em (.062 in.) CELL HONEYCOMB
: : | O "ABRADABLE A"
0.8 % )
(1.0) - E §
©0.8) |~ 0.6 I i':' g
50
: 0
: 5o
0.6) - L <>O ? O 159 m-'s (523 fi/sec)
OO £ @Q:
0.4 |- 09 Z% :
0.2 @298 D o
0.7 QQJ 9@6@0@ : 80 m/s (261 ft/sec)
0 &~ 0 ! i T T . T 1 | |
1.0 2.0 3.0 4.0
Pu/Pps SEAL PRESSURE RATIO
GIN
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P/8y/8, CORRECTED SEAL ROTOR POWER - kw (hp)

E-8

(1.8)
(1.6)}1.2
0.8

0.2) -
0.8
0.0

(0.8) T—O.b

0.6 F
0.4

(0.4) }~

0.2
0.2)

FIGURE E-3. CORRECTED SEAL ROTOR POWER VERSUS SEAL PRESSURE
RATIO FOR A FOUR KNIFE STRAIGHT SEAL

CL, CLEARANCE = .025 cm (.10 in,)
KP, KNIFE PITCH = .279 cm (. 110 in.)

L

239 m/s (785 ft/sec)

V/4/6 , CORRECTED KNIFE TIP SPEED
. ]

L3 ¥ 0
(44 : ©
o o ©
2 o

-

- £ | O SOLID-SMOOTH
£] O 159 cm (082 in.) CELL HONEYCOMB
£ | O "ABRADABLE A"

o
o

159 m/s (523 ft/sec)

%

Vo o)
Pes)
e

LU L L Ly L T T T L U T I I T L BasaNRARSRRROOOOINEY

&

813
®
o

@0:i0 D 9 : 80 m/s (261 ft/sec)
, 1 | ] - ] I I
0 2.0 3.0 4.0

Py/Pps SEAL PRESSURE RATIO
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P/ ft, CORRECTED SEAL ROTOR POWER - kw (hp)
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FIGURE E-4,
RATIO FOR A FOUR

CORRtCItD StAL ROTOR POWER VERSUS SEAL PRESSURE

KNIFE STRAIGHT SEAL

CL, CLEARANCE = .051 cm (.020 in.)

KP, KNIFE PITCH = .279 ¢cm (.110 in.)

1.4 : H
: : V/[§ , CORRECTED KNIFE TIP SPEED
8 : Q_ o0 239 m/s (785 ft/sec)
1.2 @§ H -
H go o
)
1.0 § H
: : LAND
= - L]
osb : : O SOLID-SMOOTH
: g 03 -159 cm (.062 in.) CELL
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P/8J6, CORRECTED SEAL ROTOR POWER = kw (hp)
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Examples of the computer program osutputs from both the 2D rig
and the 3D rig tests are presented for representative seal con-
figurations and test conditions. The outputs of the programs
are organized in the following groups:

(1) 1instrumentation readings in analog units,

(2) test data in standard working units.

(3) seal leakage performance in parametric form.

(4) seal power absorption performance test data and
parameters (for the 3D rig only).

The raw data from 2D rig testing are in Figures F-1 and F-2. Figures

F-3 and F-4 are examples of 3D rig data at static and dynamic test
conditions.
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APPENDIX G

Notes from the Test Log on the Subject of
Acoustical Noise Generated by Specific
Labyrinth Seals
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The testing of certain four knife straight seals in the 2D rig
produced acoustic phenomena.

During testing of the "Abradable A" and "Abradable B" lands, a

step change in the sound intensity of the leakage air was noticed

as seal pressure ratio was increased beyond a characteristic value.
The point at which the sound step change occurred was a function of
the clearance, pressure ratio, and land material. No change in the
seal leakage (flow parameter characteristic) was detected. After

the sound step (upward) occurred, it remained at the higher level to
the maximum pressure ratio tested. When these acoustic phenomena

were encountered during a test, several check points of data were
taken as the pressure ratio was reduced. As the seal inlet pressure
decreased, the leakage air acoustics experienced a step down in level
but not necessarily at the same pressure ratio for which the sound
stepped up. The phenomena were repeatable. The solid-smooth, nickel-
graphite, and aluminum-polyester lands did not demonstrate the sound
step change. A summary of the acoustic step observations is presented
in Table G-1.

The honeycomb land tests produced an acoustic phenomenon of different
characteristics. Unlike the acoustics associated with the abradable
tests in which a step change in noise level occurred, the .079 cm
(.031 in.) cell honeycomb land produced a continuc - increase to a
high noise intensity with increasing pressure ratio. Although

sound measurements were not taken, the .079 cm (.031 in.) honeycomb
at .051 cm (.020 in.) clearance produced a noise level which was
several times the nominal loudness experienced at .013 cm (.005 in.)
and .025 cm (.010 in.) clearances. The sound levels associated with
the .159 cm (.062 in.) and .318 cm (.125 in.) cell honeycombs were
of the same order as the typical sound levels experienced with the
.079 cm (.031 in.) cell honeycomb at .013 em (.005 ir.) and .025 cm
(.010 in.) clearances. Cursory analysis of the .381 cm (.150 in.)
deep honeycomb test results indicated a possible correlation of the
phenomenon with a 1/4 wave resonance tube effect. However, when
cell depth was reduced by wax filling the honeycomb lands for
subsequent tests, no acoustical noise of equivalent so':nd intensity
was noticed during these runs. The possible effects © 1x meniscus
and compliance in the honeycomb cell is not known.

None of these acoustical phenomena were noted during similar tests
on the 3D rig. Background noise level is considerably higher on
the 3D rig and could have obscured the seal leakage acoustics.

Acoustic pheuomena are of concern relative to engine applications
since fatigue failure of the seal knives could result from aero-
dynamically induced vibration.



TABLE G-1. SUMMARY OF ABRADABLE LAND NOISE LEVEL VARIATIONS
NOTED DURING TEST CALIBRATIONS

TYPE SEAL OPERATING CHANGE NOTED SEAL INLET SEAL PRESSURE
LAND CLEARANCE MODE OF IN NOISE LEVEL PRESSURE . RATIO v NOISE
cm (in.) SEAL INLET NOISE LEVEL LEVEL SHIFT
PRESS, Py SHIFTY
kPo sia)
“Abradcble A" ,013 (0.005) Pu Increasing  Step Change to 440.1 (63.83) 4.4}
Higher Noise
Level
.013  (0.005) Pu Decreosing Step Chonge to 250.5 (36.33) 2.51
Lower Noise
Level
“Abradable B" .025 (0.010 Pu Increasing  Step Change to 557.6 (80.87) 5.61
Higher Noise
Level
.025 (0.010) Py Decreasing Step Change to 142.2  (20.62) 1.43
Lower Noise
Level
"Abrodable B" .013 (0.005) PU Increasing  Step Change to 303.0 (43.94) 3.03
Higher Noise
Level
.013  10.005) PU Decreasing Step Change to 140.2 (20.33) 1.40
Lower Noise
Level
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APPENDIX H

Symbols and Seal Nomenclature

ORIGNAL PAGE IS
ORF POOR QUALITHM

L)



SYMBOL

H-2

5

K6
LTSD

Symbols

DEFINITION

Flow area between the seal knives
and land

Seal discharge coefficient

Clearance between seal knives and
land

Specific heat at constant pressure
Maximum jet (spouting) velocity
Turbine tip diameter

Distance~to-contact:axial clearance
between knife and land, undefined for
constant height straight-through seals

Standard gravitational acceleration mass
conversion factor

Knife height

Number of knives
Knife pitch

Knife tip thickness
Knife angle

Leakage flow direction from the large-
to-small seal diameter

Seal rotor power absorption

Seal plenum downstream pressure

Seal plenum upstream pressure

Seal orifice downstream pressure

Seal orifice upstream pressure

Seal drive turbine exit plenum pressure
Seal drive turbine inlet plenum pressure

Seal drive turbine orifice downstream
pressure

UNITS
S1 Metric English
2 .2
om in.
om in.
J/kg - K I;Lu,'ll)“ 1
1
m/s ft/sec
cm in.
cm in.
Z )y
kg * m/N - s 0b 1t/1b sed”
n t
cm in.
cm in.
cm in.
deg,” deg,”
kw hp
kPa psia
kPa psia
kPa psia **
kPa psla
kPa psla
kPa psia
kPa psia ’



SYMBOL

Proy

RMS
RPM

SH
SFC

STLD

/T

3

D

TU

Sou
Tou

£ £ <

O <

DEFINITION

Seal drive turbine orifice upstream
pressure

Gas constant
Root mean square
Rotational speed, angular velocity

Step height

Engine thrust specific fuel consumption

Leakage flow direction from the small-
to-large seal diameter

Turbine rotor stall torque
Square root of temperature
Seal upstream plenum temperature

Seal drive turbine exit plenum
temperature

Seal drive turbine inlet plenum
temperature

Seal orifice tube upstream temperature

Turbine orifice tube upstream
temperature

Turbine blade tip speed

Seal knife tip speed

Seal airflow rate

Turbine airflow rate

Specific heat ratio

Pressure/base (std) pressure
Turbine adiabatic efficlency
Temperature/base (std) temperature

Conventional transcendental number,
ratio of circular circumference to
diameter

Turbine torque coefficient

Airflow parameter

Lh LUUR QUALITY,

UNITS
SI Metric English
kPa psia
Ki/kg - Kk 1Pg fC
1b_ °R
m
rpm rpm
cm in.
K& 1 by,
N s Topsec
N . <cm in 1b
[y 1 f
K’2 oR’2
K °R
K °R
K °R
°R
m/s ft/sec
m/s ft/sec
kg/s 1bm/sec
kg/s b /sec
m
kg - K* by R
N.s 1bf sec
H-3

o



SEAL NOMENCLATURE

. Knife Tip Thickness, K1
Distance to

Contact, DTC \—
| S T—

Step Height, SH = Radial Clearance, C1
N L]
Land ! l
Knife Height, KH\ ] I \ 1
'L—— Knife Angle, K@

LTSD Flow Direction

Rotor (Large=to-Small Diameter)
STLD Flow Direction

(Small-to-Large Diameter) Knife Pitch, KP




